Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep 10;24(19):5263-9.
doi: 10.1021/bi00340a046.

Kinetics and thermodynamics of the assembly of the parallel- and antiparallel-packed sections of synthetic thick filaments of skeletal myosin: a pressure-jump study

Kinetics and thermodynamics of the assembly of the parallel- and antiparallel-packed sections of synthetic thick filaments of skeletal myosin: a pressure-jump study

J S Davis. Biochemistry. .

Abstract

Earlier work on the length regulation mechanism of synthetic myosin filaments generated at pH 8.2 showed the process to be mediated through the dissociation rate constant which had an increasing and apparently monophasic exponential dependence on filament length and an association rate constant that was length independent, filament growth ceasing at the point of equilibrium [Davis, J.S. (1981) Biochem. J. 197, 309-314]. In this work, the exponential dependence of the dissociation rate constant on thick filament length was shown to be more complex than originally thought. Two phases were resolved, one of which correlated with the dissociation of parallel-packed myosin and the other with that of antiparallel-packed material. The pressure dependence of the dissociation reaction for the parallel-packed material showed that the activation volume decreased linearly with length while the Gibbs energy increased. This was interpreted as indicating that the weakening of the interaction between dimer and filament with length was accompanied by a decrease in the extent of ionic bonding. The case in the antiparallel-packed region was quite different, with the activation volume and the Gibbs energy both increasing linearly. The contribution from ionic bonding thus rises counter to the change in Gibbs energy, presumably at the expense of other noncovalent interactions. The relationship between the synthetic thick filaments and their in vivo counterparts is also considered in some detail.

PubMed Disclaimer

Publication types