Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep 24;24(20):5406-16.
doi: 10.1021/bi00341a019.

Incorporation and translocation of aminophospholipids in human erythrocytes

Incorporation and translocation of aminophospholipids in human erythrocytes

D L Daleke et al. Biochemistry. .

Abstract

Cell morphology changes are used to examine the interaction of exogenous phosphatidylserine and phosphatidylethanolamine with human erythrocytes. Short-chain saturated lipids transfer from liposomes to cells, inducing shape changes that are indicative of their incorporation into, and in some cases translocation across, the cell membrane bilayer. Dioleoylphosphatidylserine and low concentrations of dilauroyl- and dimyristoylphosphatidylserine induce stomatocytosis. At higher concentrations, dilauroylphosphatidylserine and dimyristoylphosphatidylserine induce a biphasic shape change: the cells crenate initially but rapidly revert to a discocytic and eventually stomatocytic shape. The extent of these shape changes is dose dependent and increases with increasing hydrophilicity of the phospholipid. Cells treated with dilauroylphosphatidylethanolamine and bovine brain lysophosphatidylserine exhibit a similar biphasic shape change but revert to discocytes rather than stomatocytes. These shape changes are not a result of vesicle--cell fusion nor can they be accounted for by cholesterol depletion. The reversion from crenated to stomatocytic forms is dependent on intracellular ATP and Mg2+ concentrations and the state of protein sulfhydryl groups. The present results are consistent with the existence of a Mg2+- and ATP-dependent protein in erythrocytes that selectively translocates aminophospholipids to the membrane inner monolayer engendering aminophospholipid asymmetry.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources