Paradoxical electromechanical effect of lanthanum ions in cardiac muscle cells
- PMID: 4074831
- PMCID: PMC1329394
- DOI: 10.1016/S0006-3495(85)83827-3
Paradoxical electromechanical effect of lanthanum ions in cardiac muscle cells
Abstract
Although lanthanum ions (La+++) block calcium influx in cardiac cells, they may paradoxically accentuate the sodium-free contracture. We have therefore studied the effects of La+++ on the zero sodium response in chick embryonic myocardial cell aggregates. Zero sodium alone causes: (a) A maintained contracture; (b) Asynchronous localized contractions that are selectively inhibited by caffeine or ryanodine, and presumably reflect release of calcium from the sarcoplasmic reticulum; (c) A nonspecific conductance increase that is ascribable to calcium-activated ion channels. Addition of La+++ potentiates the sodium-free contracture, and causes similar potentiation of the localized contractions and the conductance increase. All three phenomena occur 5-10-fold faster in 1 mM La+++ than in sodium-free fluid alone. In contrast, when La+++ is combined with caffeine or ryanodine, the zero sodium response is suppressed. We conclude that the paradoxical effect of La+++ on the contracture is not due to calcium influx, but to enhancement, or disinhibition of intracellular calcium release. Relaxation of normal myocardium may involve control of spontaneous calcium release by lanthanum- and sodium-sensitive calcium transport across the surface membrane.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
