Directed evolution of LaccID for cell surface proximity labeling and electron microscopy
- PMID: 40751001
- DOI: 10.1038/s41589-025-01973-6
Directed evolution of LaccID for cell surface proximity labeling and electron microscopy
Abstract
Enzymes that oxidize aromatic substrates have been harnessed for cell-based technologies including proximity labeling and electron microscopy; however, they are associated with drawbacks such as the need for toxic H2O2. Here, we explore multicopper oxidases (laccases) as a new enzyme class for proximity labeling and electron microscopy in mammalian cells. LaccID was generated through 11 rounds of directed evolution from an ancestral fungal laccase and catalyzes one-electron oxidation of diverse aromatic substrates using O2 instead of toxic H2O2. Surprisingly, we found that LaccID is selectively active at the surface plasma membrane of both living and fixed cells. We use LaccID proximity labeling and mass spectrometry to map the changing surface proteome of T cells that engage with tumor cells through antigen-specific T cell receptors. In addition, we use LaccID as a genetically encodable tag for EM visualization of cell surface features in mammalian cell culture and in the fly brain. Our study paves the way for future cell-based applications of LaccID.
© 2025. The Author(s).
Conflict of interest statement
Competing interests: A.Y.T. is a scientific advisor to Third Rock Ventures and Nereid Therapeutics. The remaining authors declare no competing interests.
Update of
-
Directed evolution of the multicopper oxidase laccase for cell surface proximity labeling and electron microscopy.bioRxiv [Preprint]. 2024 Oct 29:2024.10.29.620861. doi: 10.1101/2024.10.29.620861. bioRxiv. 2024. Update in: Nat Chem Biol. 2025 Aug 1. doi: 10.1038/s41589-025-01973-6. PMID: 39554088 Free PMC article. Updated. Preprint.
References
-
- Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015). - PubMed
Grants and funding
LinkOut - more resources
Research Materials