Advancing engineering design strategies for targeted cancer nanomedicine
- PMID: 40751005
- DOI: 10.1038/s41568-025-00847-2
Advancing engineering design strategies for targeted cancer nanomedicine
Abstract
Engineered nanoparticles have greatly expanded cancer treatment by encapsulating and delivering therapeutic and diagnostic agents, otherwise limited by poor pharmacokinetics and toxicity, to target tumour cells. Leveraging our increased understanding of the tumour microenvironment, nanomedicine has expanded to additionally target key tissues and cells implicated in tumorigenesis, such as immune and stromal cells, to improve potency and further mitigate off-target toxicities. To design nanocarriers that overcome the body's physiological barriers to access tumours, the field has explored broader routes of administration and nanoparticle design principles, beyond the enhanced permeation and retention effect. This Review explores the advantages of non-covalent surface modifications of nanoparticles, along with other surface modifications, to modulate nanoparticle trafficking from the injection site, into tumour and lymphoid tissues, to the target cell, and ultimately its subcellular fate. Using electrostatic or other non-covalent techniques, nanoparticle surfaces can be decorated with native and synthetic macromolecules that confer highly precise cell and tissue trafficking. Rational design can additionally minimize detection and clearance by the immune system and prolong half-life - key to maximizing efficacy of therapeutic cargos. Finally, we outline how cancer nanomedicine continues to evolve by incorporating learnings from novel screening technologies, computational approaches and patient-level data to design efficacious targeted therapies.
© 2025. Springer Nature Limited.
Conflict of interest statement
Competing interests: P.T.H. is the co-founder and a former member of the Board of LayerBio, Inc., a member of the Board of Alector Therapeutics, the Board of Sail Biomedicine, a Flagship company, and a former member of the Scientific Advisory Board of Moderna Therapeutics.
Similar articles
-
Chemical Strategies to Modulate and Manipulate RNA Epigenetic Modifications.Acc Chem Res. 2025 Jun 3;58(11):1727-1741. doi: 10.1021/acs.accounts.4c00844. Epub 2025 Mar 18. Acc Chem Res. 2025. PMID: 40100209 Review.
-
Management of urinary stones by experts in stone disease (ESD 2025).Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085. Epub 2025 Jun 30. Arch Ital Urol Androl. 2025. PMID: 40583613 Review.
-
Regulating Bacteria-Host Interactions for Disease Intervention by Covalent Conjugation of Bacterial Surface.Acc Chem Res. 2025 Jul 1;58(13):2110-2123. doi: 10.1021/acs.accounts.5c00271. Epub 2025 Jun 9. Acc Chem Res. 2025. PMID: 40489653 Review.
-
Nucleic Acid Nanocapsules as a New Platform to Deliver Therapeutic Nucleic Acids for Gene Regulation.Acc Chem Res. 2025 Jul 1;58(13):1951-1962. doi: 10.1021/acs.accounts.5c00126. Epub 2025 Jun 9. Acc Chem Res. 2025. PMID: 40491030
-
Systemic treatments for metastatic cutaneous melanoma.Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2. Cochrane Database Syst Rev. 2018. PMID: 29405038 Free PMC article.
References
-
- Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer-chemotherapy - mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986). This seminal paper illustrates the EPR effect, demonstrating high macromolecule accumulation in tumours. - PubMed
-
- Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Rel. 65, 271–284 (2000).
-
- Lahooti, B. et al. Targeting endothelial permeability in the EPR effect. J. Control. Rel. 361, 212–235 (2023).
-
- Bertrand, N., Wu, J., Xu, X. Y., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014). - PubMed
Publication types
LinkOut - more resources
Full Text Sources