Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 18;135(3):035101.
doi: 10.1103/h2ss-6zpf.

First Demonstration of Improved Fusion Yield with Increased Compression through Reduced Adiabat in Inertial Confinement Fusion Experiments at the National Ignition Facility

Affiliations

First Demonstration of Improved Fusion Yield with Increased Compression through Reduced Adiabat in Inertial Confinement Fusion Experiments at the National Ignition Facility

M Hohenberger et al. Phys Rev Lett. .

Abstract

Recent advancements in indirect-drive inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) have achieved a significant milestone by demonstrating target gains greater than one, yet future applications necessitate much higher target gains. One approach to achieving improved implosion performance is to pursue increased fuel compression via a lowered implosion adiabat. Experiments have been performed testing a reduced adiabat by introducing small changes to the drive laser pulse shape and the resulting shock timing for an existing implosion design at 1.9 MJ laser drive with near-ignition performance (experiment N210808). Experiments using the updated design demonstrate, for the very first time, increased compression and fusion yield in ICF implosions on the NIF by using a lower fuel adiabat, and increased compression with a reduced adiabat in high-density carbon ablators. Compared to the previously best-performing experiment with a laser energy of 1.9 MJ, these experiments exhibit increases of up to 80% and 14% in nuclear fusion yield and fuel compression, respectively, and with repeatable performance. Further, it is the only implosion design to have achieved a target gain exceeding one with a laser energy of less than 2 MJ. These findings highlight the efficacy of reduced adiabat designs in achieving higher compression and fusion yields, offering a promising pathway for future ICF applications. This Letter not only addresses a long-standing question in ICF but also paves the way for achieving higher target gains with optimized implosion strategies.

PubMed Disclaimer