Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 1:S0092-8674(25)00801-3.
doi: 10.1016/j.cell.2025.07.012. Online ahead of print.

A mechano-resistance mechanism in skin adapts to terrestrial locomotion

Affiliations

A mechano-resistance mechanism in skin adapts to terrestrial locomotion

Ruonan Di et al. Cell. .

Abstract

The transition from water to land required animals to evolve specialized paw skin to support body weight and enable locomotion. We identify an evolutionarily emerged mechanism in skin epithelial cells that adapts to this mechanical demand. We show that the Slurp1 gene, conserved across tetrapods, is specifically expressed in palmoplantar skin. In humans, mutations in SLURP1 cause palmoplantar keratoderma (PPK), a condition marked by pathologically thickened skin epidermis on the soles and palms. Remarkably, reducing mechanical pressure on Slurp1 knockout paw skin fully rescues the PPK phenotype. Mechanistically, SLURP1 localizes to the endoplasmic reticulum (ER) membrane, where it binds the calcium pump SERCA2b. By preserving SERCA2b activity under mechanical pressure, SLURP1 maintains low cytoplasmic calcium levels and inhibits pressure-induced activation of the pPERK-NRF2 signaling-a pathway that can be genetically targeted to reverse PPK. These findings reveal an ER-based mechano-resistance mechanism that enhances cellular defense against prolonged mechanical pressure.

Keywords: SERCA2b; SLURP1; calcium; endoplasmic reticulum; mechanical pressure; palmoplantar keratoderma.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests All authors declare no competing interests related to this work.

LinkOut - more resources