Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 5.
doi: 10.1038/s41594-025-01643-0. Online ahead of print.

GAGA zinc finger transcription factor searches chromatin by 1D-3D facilitated diffusion

Affiliations

GAGA zinc finger transcription factor searches chromatin by 1D-3D facilitated diffusion

Xinyu A Feng et al. Nat Struct Mol Biol. .

Abstract

The search for target sites on chromatin by eukaryotic sequence-specific transcription factors (TFs) is integral to the regulation of gene expression but the mechanism of nuclear exploration has remained obscure. Here we use multicolor single-molecule fluorescence resonance energy transfer and single-particle imaging to track the diffusion of purified Drosophila GAGA factor (GAF) on DNA and nucleosomes. Monomeric GAF DNA-binding domain (DBD) bearing one zinc finger finds its cognate site through one-dimensional (1D) or three-dimensional (3D) diffusion on bare DNA and rapidly slides back and forth between naturally clustered motifs for seconds before dissociation. Multimeric, full-length GAF also finds clustered motifs on DNA through 1D-3D diffusion but remains locked on target for longer periods. Nucleosome architecture effectively blocks GAF-DBD 1D sliding into the histone core but favors retention of GAF-DBD once it has bound to a solvent-exposed motif through 3D diffusion. Despite the occlusive nature of nucleosomes, 1D-3D facilitated diffusion enables GAF to effectively search for clustered cognate motifs in chromatin, providing a mechanism for navigation to nucleosomal and nucleosome-free sites by a member of the zinc finger TF family.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests.

Update of

References

    1. Flury, V. & Groth, A. Safeguarding the epigenome through the cell cycle: a multitasking game. Curr. Opin. Genet. Dev. 85, 102161 (2024).
    1. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).
    1. Kadonaga, J. T. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92, 307–313 (1998).
    1. Isbel, L., Grand, R. S. & Schübeler, D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat. Rev. Genet. 23, 728–740 (2022).
    1. Lukas, J., Lukas, C. & Bartek, J. More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat. Cell Biol. 13, 1161–1169 (2011).

LinkOut - more resources