Spectral divergence prioritizes key classes, genes, and pathways shared between substance use disorders and cardiovascular disease
- PMID: 40766907
- PMCID: PMC12321874
- DOI: 10.3389/fnins.2025.1572243
Spectral divergence prioritizes key classes, genes, and pathways shared between substance use disorders and cardiovascular disease
Abstract
Introduction: Substance use disorders (SUDs) are heterogeneous diseases with overlapping biological mechanisms and often present with co-occurring disease, such as cardiovascular disease (CVD). Gene networks associated with SUDs also implicate additional biological pathways and may be used to stratify disease subtypes. Node and edge arrangements within gene networks impact comparisons between classes of disease, and connectivity metrics, such as those focused on degrees, betweenness, and centrality, do not yield sufficient discernment of disease network classification. Comparatively, the graph spectrum's use of comprehensive information facilitates hypothesis testing and inter-disease clustering by using a larger range of graph characteristics. By adding a connectivity-based method, network rankings of similarity and relationships are explored between classes of SUDs and CVD.
Methods: Graph spectral clustering's utility is evaluated relative to commonly used network algorithms for discernment between two distinct co-occurring disorders and capacity to rank pathways based on their distinctiveness. A collection of graphs' structures and connectivity to functionally identify the relationship between CVD and each of four classes of SUDs, namely alcohol use disorder (AUD), cocaine use disorder (CUD), nicotine use disorder (NUD), and opioid use disorder (OUD) is evaluated. Moreover, a Kullback-Leibler (KL) divergence is implemented to identify maximally distinctive genes (D g ). The emphasis of genes with high D g enables a Jaccard similarity ranking of pathway distinctiveness, creating a functional "network fingerprint".
Results: Spectral graph outperforms other connectivity-based approaches and reveals interesting observations about the relationship among SUDs. Between CUD and CVD, the gamma-aminobutyric acidergic and arginine metabolism pathways are distinctive. The neurodegenerative prion disease and tyrosine metabolism are emphasized between OUD and CVD. The graph spectrum between AUD and NUD to CVD is not significantly divergent.
Conclusion: Graph spectral clustering with KL divergence illustrates differences among SUDs with respect to their relationship to CVD, suggesting that despite a high-level co-occurring diagnosis or comorbidity, the nature of the relationship between SUD and CVD varies depending on the substance involved. The graph clustering method simultaneously provides insight into the specific biological pathways underlying these distinctions and may reveal future basic and clinical research avenues into addressing the cardiovascular sequelae of SUD.
Keywords: cardiovascular disease; disease-associated prioritization; functional fingerprint; graph spectrum; substance use disorder.
Copyright © 2025 Castaneda, Chesler and Baker.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures





Similar articles
-
Short-Term Memory Impairment.2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
-
Management of urinary stones by experts in stone disease (ESD 2025).Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085. Epub 2025 Jun 30. Arch Ital Urol Androl. 2025. PMID: 40583613 Review.
-
Sexual Harassment and Prevention Training.2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 36508513 Free Books & Documents.
-
Dipeptidyl peptidase-4 inhibitors, glucagon-like peptide 1 receptor agonists and sodium-glucose co-transporter-2 inhibitors for people with cardiovascular disease: a network meta-analysis.Cochrane Database Syst Rev. 2021 Oct 25;10(10):CD013650. doi: 10.1002/14651858.CD013650.pub2. Cochrane Database Syst Rev. 2021. PMID: 34693515 Free PMC article.
-
[Guidelines for the prevention and management of bronchial asthma (2024 edition)].Zhonghua Jie He He Hu Xi Za Zhi. 2025 Mar 12;48(3):208-248. doi: 10.3760/cma.j.cn112147-20241013-00601. Zhonghua Jie He He Hu Xi Za Zhi. 2025. PMID: 40050074 Chinese.
References
LinkOut - more resources
Full Text Sources