Cigarette smoke-induced glycerophospholipid DLPC promotes macrophage ferroptosis through the USP7/GPX4 regulatory axis in chronic obstructive pulmonary disease
- PMID: 40769290
- DOI: 10.1016/j.cbi.2025.111697
Cigarette smoke-induced glycerophospholipid DLPC promotes macrophage ferroptosis through the USP7/GPX4 regulatory axis in chronic obstructive pulmonary disease
Abstract
Chronic obstructive pulmonary disease (COPD), a smoking-associated chronic inflammatory disorder, involves macrophage-mediated inflammation and cell death, yet the mechanisms linking cigarette smoke (CS) to macrophage ferroptosis remain unclear. Through integrated transcriptomic and metabolomic analyses of CS-exposed macrophages, we identified activation of the ferroptosis pathway accompanied by dysregulated glycerophospholipid metabolism. Notably, phosphatidylcholine species enriched in polyunsaturated fatty acids (PUFA-PC), particularly 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC), were markedly elevated. Functional studies revealed that DLPC exacerbated lipid peroxidation and triggered ferroptosis in macrophages. Mechanistically, DLPC downregulated the deubiquitinase ubiquitin-specific peptidase 7 (USP7), which normally stabilizes glutathione peroxidase 4 (GPX4) through TRAF/CAT domain-mediated binding and deubiquitination activity. This suppression accelerated GPX4 ubiquitination and subsequent proteasomal degradation. Furthermore, CS upregulated glycerol-3-phosphate acyltransferase 3 (GPAT3), whose genetic ablation diminished PUFA-PC (including DLPC) synthesis, attenuated lipid reactive oxygen species (ROS) accumulation, and inhibited ferroptosis in CS-stimulated macrophages. In vivo, adeno-associated virus-mediated GPAT3 knockdown in murine lung tissues mitigated ROS production, ferroptosis, and emphysema in an experimental emphysema murine model. Collectively, our findings delineate a CS-GPAT3-DLPC axis that drives macrophage ferroptosis via USP7/GPX4 dysregulation, offering novel mechanistic insights into COPD pathogenesis and identifying DLPC and GPAT3 as potential therapeutic targets.
Keywords: Cigarette smoke; DLPC; Ferroptosis; GPX4; Macrophages; USP7.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
