Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 6.
doi: 10.1038/s41557-025-01896-8. Online ahead of print.

Immobilized acyl-transfer molecular reactors enable the solid-phase synthesis of sterically hindered peptides

Affiliations

Immobilized acyl-transfer molecular reactors enable the solid-phase synthesis of sterically hindered peptides

Siyuan Wei et al. Nat Chem. .

Abstract

Incorporating unnatural amino acids, such as hindered N-methylated or α,α-disubstituted amino acid(s), into peptides can improve their properties for application in the pharmaceutical and biomedical fields. However, the current solid-phase peptide synthesis (SPPS) faces sluggish reaction rates and low yields when incorporating sterically hindered amino acids, owing to the poor kinetics of the two-phase acyl-transfer process from solution to solid. Here we introduce an immobilized ribosome-mimicking molecular reactor to facilitate on-resin proximity-induced intra(inter)-reactor acyl transfers. This strategy bypasses the two-phase acyl-transfer mechanism in conventional SPPS and boosts coupling efficiency in the solid-phase synthesis of N-methylated and/or α,α-disubstituted amino acid(s)-containing sterically hindered peptides, including cyclosporin A and alamethicin F analogues. The ribosome-mimicking molecular reactor SPPS can be integrated into existing SPPS platforms using commercially available resins and reagents, and displays high compatibility with standard synthesizers, enabling the automated synthesis of pharmaceutically important, sterically hindered difficult peptides.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests.

References

    1. Jensen, K. J., Shelton, P. T. & Pedersen, S. L. (eds.) Peptide Synthesis and Applications 2nd edn (Humana, 2013).
    1. Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 141, 4167–4181 (2019). - PubMed
    1. Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021). - PubMed
    1. Henninot, A., Collins, J. C. & Nuss, J. M. The current state of peptide drug discovery: back to the future? J. Med. Chem. 61, 1382–1414 (2018). - PubMed
    1. Chatterjee, J., Gilon, C., Hoffman, A. & Kessler, H. N-Methylation of peptides: a new perspective in medicinal chemistry. Acc. Chem. Res. 41, 1331–1342 (2008). - PubMed

LinkOut - more resources