A workflow for statistical analysis and visualization of microbiome omics data using the R microeco package
- PMID: 40770112
- DOI: 10.1038/s41596-025-01239-4
A workflow for statistical analysis and visualization of microbiome omics data using the R microeco package
Abstract
The increasing complexity of experimental designs and the volume of data in the microbiome field, along with the diversification of omics data types, pose substantial challenges to statistical analysis and visualization. Here we present a step-by-step protocol based on the R microeco package ( https://github.com/ChiLiubio/microeco ) that details the statistical analysis and visualization of microbiome data. The omics data types shown consist of amplicon sequencing data, metagenomic sequencing data and nontargeted metabolomics data. The analysis of amplicon sequencing data specifically involves data preprocessing and normalization, core taxa, alpha diversity, beta diversity, differential abundance testing and machine learning. We consider various data analysis scenarios in each section to exhibit the comprehensiveness of the protocol. We emphasize that different normalized data produced by various methods are selected for subsequent analysis of each part based on the best analytical practices. Additionally, in the differential abundance test analysis, we adopt parametric community simulation to enable the performance evaluation of various testing approaches. For the analysis of metagenomic data, the focus is on how bioinformatic analysis data are read and preprocessed, which refers to the major usage differences from amplicon sequencing data. For metabolomics data, we mainly demonstrate the differential test, machine learning and association analysis with microbial abundances. To address some complex analyses, this protocol extensively combines different types of methods to build an analysis pipeline. This protocol is more comprehensive and scalable compared with alternative methods. The provided R codes can run in about 6 h on a laptop computer.
© 2025. Springer Nature Limited.
Conflict of interest statement
Competing interests: The authors declare no competing interests.
Similar articles
-
Perceptions and experiences of the prevention, detection, and management of postpartum haemorrhage: a qualitative evidence synthesis.Cochrane Database Syst Rev. 2023 Nov 27;11(11):CD013795. doi: 10.1002/14651858.CD013795.pub2. Cochrane Database Syst Rev. 2023. PMID: 38009552 Free PMC article.
-
Parents' and informal caregivers' views and experiences of communication about routine childhood vaccination: a synthesis of qualitative evidence.Cochrane Database Syst Rev. 2017 Feb 7;2(2):CD011787. doi: 10.1002/14651858.CD011787.pub2. Cochrane Database Syst Rev. 2017. PMID: 28169420 Free PMC article.
-
Implementation of link workers in primary care: Synopsis of findings from a realist evaluation.Health Soc Care Deliv Res. 2025 Jul;13(27):1-30. doi: 10.3310/KHGT9993. Health Soc Care Deliv Res. 2025. PMID: 40758653
-
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.Syst Rev. 2024 Nov 26;13(1):289. doi: 10.1186/s13643-024-02681-3. Syst Rev. 2024. PMID: 39593159 Free PMC article.
-
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.Respir Res. 2024 Dec 21;25(1):438. doi: 10.1186/s12931-024-03056-x. Respir Res. 2024. PMID: 39709425 Free PMC article. Review.
References
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources