Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Nov-Dec;7(6 Pt 1):899-904.
doi: 10.1161/01.hyp.7.6.899.

Presence of cytochrome P-450-dependent monooxygenase in intimal cells of the hog aorta

Presence of cytochrome P-450-dependent monooxygenase in intimal cells of the hog aorta

N G Abraham et al. Hypertension. 1985 Nov-Dec.

Abstract

Cytochrome P-450-dependent mixed function oxidase activity is present in vascular tissue; however, as far as we could determine, the distribution of monooxygenase activity across the blood vessel wall has not previously been assessed. The aryl-hydrocarbon hydroxylase activity was examined by metabolism of benzo[a]pyrene in microsomes prepared from intimal and smooth muscle cell scrapings of the hog thoracic aorta. Microsomes of intimal cells comprising 95% endothelial cells showed an approximately 2.5-fold increase in aryl-hydrocarbon hydroxylase activity compared with that in microsomes prepared from medial smooth muscle cells. Michaelis-Mentin kinetics for the intimal enzyme yielded an apparent Km value of 11.11 microM and an apparent Vmax of 3-OH benzo[a]pyrene of 40 pmol/mg protein/10 min. Aryl-hydrocarbon hydroxylase activity was dependent on nicotinamide adenine dinucleotide phosphate and was inhibited by 7,8 benzoflavone, SKF 525A, and carbon monoxide. The localization of cytochrome P-450-dependent mixed function oxidase primarily to the intimal surface of the aorta may indicate a role for this enzyme system in vasoregulation and the pathogenesis of atherosclerosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources