Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 22;90(33):11910-11922.
doi: 10.1021/acs.joc.5c01392. Epub 2025 Aug 7.

Deconstructing α-Amidoalkyl Sulfones as Dual d-Sulfonyl/ a-Azomethine Synthons: Synthesis of 3-Sulfonylmethylindole Aminals

Affiliations

Deconstructing α-Amidoalkyl Sulfones as Dual d-Sulfonyl/ a-Azomethine Synthons: Synthesis of 3-Sulfonylmethylindole Aminals

Guillermo Domínguez et al. J Org Chem. .

Abstract

α-Amido sulfones (1) are widely applied as electrophilic aminoalkylation reagents. However, nonproductive sulfinate species are formed alongside. Here, we report that ethyl propiolate-promoted coupling of 1 and gramines provides 3-sulfonylmethylindole aminals II smoothly, thus establishing α-amido sulfones as dual donor/acceptor reagents with full atom incorporation on the target molecule. Simple adjustment of reactants loading allows one to revert the reaction outcome, leading to exclusive formation of 3-sulfonylmethylindoles I instead.

PubMed Disclaimer

Figures

1
1
α-Amido sulfones as ambifunctional reagents.
1
1. Scope of the Reaction Leading to 3-Arenesulfonylmethyl (aza)­indoles 13/16
2
2. α-Amido Sulfones as Dual Donor/Acceptor Reagents
3
3. Control Experiments
2
2
Variation of 1H NMR NH peaks as a function of temperature for (a) gramine 8a alone, (b) sulfone 13aa alone, and (c) equimolar admix of 8a and 13aa (taken in DMSO-d 6; ΔT intervals = 5 K). Equations of δ (ppm) vs ΔT straight lines: (a) δ = 11.98–0.003721ΔT; (b) δ = 11.99–0.002936ΔT; and (c) δ1 = 12.09–0.00289296ΔT, δ2 = 12.67–0.00243207ΔT.
4
4. Plausible Reaction Pathway

References

    1. Engberts J. B. F. N., Strating J.. The Mannich condensation of sulfinic acids, aldehyde, and ethyl carbamate II: The use of higher aldehydes. Recl. Trav. Chim. Pays-Bas. 1965;84:942–950. doi: 10.1002/recl.19650840714. - DOI
    2. Pearson W. H., Lindbeck A. C., Kampf J. W.. Configurational stability of chiral, nonconjugated nitrogen-substituted organolithium compounds generated by tin-lithium exchange of N-[(1-tri-n-butylstannyl)­alkyl]­imidazolidin-2-ones and -oxazolidin-2-ones. J. Am. Chem. Soc. 1993;115:2622–2636. doi: 10.1021/ja00060a011. - DOI
    3. Kanazawa A. M., Denis J.-N., Greene A. E.. Highly Stereocontrolled and Efficient Preparation of the Protected, Esterification-Ready Docetaxel (Taxotere) Side Chain. J. Org. Chem. 1994;59:1238–1240. doi: 10.1021/jo00085a004. - DOI
    1. Petrini M.. α-Amido Sulfones as Stable Precursors of Reactive N-Acylimino Derivatives. Chem. Rev. 2005;105:3949–3977. doi: 10.1021/cr050528s. - DOI - PubMed
    2. Marcantoni E., Palmieri A., Petrini M.. Recent synthetic applications of α-amido sulfones as precursors of N-acylimino derivatives. Org. Chem. Front. 2019;6:2142–2182. doi: 10.1039/C9QO00196D. - DOI
    1. Selected examples:

    2. Blay G., Girón R. M., Montesinos-Magraner M., Pedro J. R.. Leaving Group and Regioselectivity Switches in the Aminoalkylation Reaction of Indoles and Related Heterocycles with α-Amido Sulfones. Eur. J. Org. Chem. 2013;2013:3885–3895. doi: 10.1002/ejoc.201300369. - DOI
    3. Monleón A., Montesinos-Magraner M., Sanz-Marco A., Blay G., Pedro J. R.. Three-Component Synthesis of α-Aminoperoxides Using Primary and Secondary Dialkylzinc Reagents with O2 and α-Amido Sulfones. Org. Lett. 2020;22:5380–5384. doi: 10.1021/acs.orglett.0c01692. - DOI - PubMed
    4. Gbubele J. D., Misiaszek T., Siczek M., Olszewski T. K.. α-Amido sulphones as useful intermediates in the preparation of C-chiral α-aminophosphonates and α-aminophosphonic acids. Org. Biomol. Chem. 2023;21:6180–6191. doi: 10.1039/D3OB00924F. - DOI - PubMed
    1. Catalytic asymmetric variants (selected examples):

    2. Gomez-Bengoa E., Linden A., López R., Múgica-Mendiola I., Oiarbide M., Palomo C.. Asymmetric Aza-Henry Reaction Under Phase Transfer Catalysis: An Experimental and Theoretical Study. J. Am. Chem. Soc. 2008;130:7955–7966. doi: 10.1021/ja800253z. - DOI - PubMed
    3. Park S. Y., Liu Y., Oh J. S., Kweon Y. K., Jeong Y. B., Duan M., Tan Y., Lee J.-W., Yan H., Song C. E.. Asymmetric Aminalization via Cation-Binding Catalysis. Chem. - Eur. J. 2018;24:1020–1025. doi: 10.1002/chem.201703800. - DOI - PubMed
    4. Serusi L., Palombi L., Pierri G., Di Mola A., Massa A.. Asymmetric Cascade Aza-Henry/Lactamization Reaction in the Highly Enantioselective Organocatalytic Synthesis of 3-(Nitromethyl)­isoindolin-1-ones from α-Amido Sulfones. J. Org. Chem. 2022;87:8420–8428. doi: 10.1021/acs.joc.2c00518. - DOI - PMC - PubMed
    1. Ballini R., Palmieri A., Petrini P., Torregiani E.. Solventless Clay-Promoted Friedel-Crafts Reaction of Indoles with α-Amido Sulfones: Unexpected Synthesis of 3-(1-Arylsulfonylalkyl) Indoles. Org. Lett. 2006;8:4093–4096. doi: 10.1021/ol061604w. - DOI - PubMed

LinkOut - more resources