Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Abstract

Despite advances in disease treatment, our understanding of how damaged organs recover and the mechanisms governing this process remain poorly defined. Here, we mapped the transcriptional and regulatory landscape of human cardiac recovery using single cell multiomics. Macrophages emerged as the most reprogrammed cell type. Deep learning identified the transcription factor RUNX1 as a key regulator of this process. Macrophage-specific Runx1 deletion recapitulated the human cardiac recovery phenotype in a chronic heart failure model. Runx1 deletion reprogrammed macrophages to a reparative phenotype, reduced fibrosis, and promoted cardiomyocyte adaptation. RUNX1 chromatin profiling revealed a conserved regulon that diminished during recovery. Mechanistically, the epigenetic reader BRD4 controlled Runx1 expression in macrophages. Chromatin activity mapping, combined with CRISPR perturbations, identified the precise regulatory element governing Runx1 expression. Therapeutically, small molecule Runx1 inhibition was sufficient to promote cardiac recovery. Our findings uncover a druggable RUNX1 epigenetic mechanism that orchestrates recovery of heart function.

PubMed Disclaimer

Publication types

LinkOut - more resources