Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep 23;25(19):4972-4985.
doi: 10.1039/d5lc00514k.

High-speed cell partitioning through reactive machine learning-guided inkjet printing

Affiliations

High-speed cell partitioning through reactive machine learning-guided inkjet printing

Eric Cheng et al. Lab Chip. .

Abstract

Partitioning cells in open nanowells permits high confidence in single cell occupancy and enables flexibility in the development of different molecular assays. A challenge for this approach however is to print cells sufficiently quickly to enable experiments of adequate statistical power in a reasonable time. To address this, we developed a single cell dispensing instrument leveraging inkjet technology with continuous real-time optical feedback and machine learning algorithms for high-throughput single cell isolation. The Isolatrix enables rapid partitioning of cells into open substrates such as nanowell arrays, permitting high-throughput application of custom genomic assays such as direct-transposition single cell whole genome sequencing (scWGS). We trained the classifier on manually labelled data with a range of cell sizes and applied the instrument to generate scWGS profiles from cell lines and primary mouse tissue. Comparison to existing predictive workflows demonstrated that this reactive approach, featuring machine learning classification of events post-dispensing, gives up to a 9.69 times increase in isolation speed. Validation via fluorescent imaging of cell lines confirmed a classification accuracy of 98.7%, at a rate of 0.52 seconds per single cell, under tuned spotting parameters. Genomic analysis showed low background contamination and high coverage uniformity across the genome, enabling detection of chromosomal copy number alterations. With data tracing capabilities and a convenient user interface, we expect the Isolatrix to enable large-scale profiling of a range of genomic data modalities.

PubMed Disclaimer

LinkOut - more resources