Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep 15:496:139382.
doi: 10.1016/j.jhazmat.2025.139382. Epub 2025 Jul 28.

Microbial synergistic metabolic mechanism of enhanced tetrabromobisphenol A removal by bio-electrochemical system coupled constructed wetland

Affiliations

Microbial synergistic metabolic mechanism of enhanced tetrabromobisphenol A removal by bio-electrochemical system coupled constructed wetland

Xiao-Qiu Lin et al. J Hazard Mater. .

Abstract

The widespread existence of tetrabromobisphenol A (TBBPA) in the aquatic environment requires efficient treatment technology. The feasibility and related molecular mechanisms for the simultaneous deep removal of nitrate and TBBPA in a bio-electrochemical system coupled with a constructed wetland (BES-CW) are unclear. This study fabricated the BES-CW to achieve simultaneously deep removal of nitrate and TBBPA. TBBPA majorly went through reductive debromination, hydrolytic debromination, ring-cleavage, and oxidation in the open and closed circuits of BES-CW. Electricity activated key genes encoded in oxidoreductase (pflA, pflX) and oxygenase (dmpB, pobA) from electroactive bacteria (Geobacter and Desulfovibrio), accelerating TBBPA metabolites' oxidation and mineralization. Nitrate enriched the Acinetobacter and stimulated genes encoded in hydrolytic dehalogenase, inducing TBBPA hydrolytic debromination and further mineralization. Electricity and nitrate synergistically enhance TBBPA degradation and mineralization, guiding the advanced treatment of emerging pollutants in the aquatic environment.

Keywords: Degradation pathway; Denitrification; Key genes; Microbial community; TBBPA degradation.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources