Copper metal-organic framework-based multifaceted strategy for boosting cancer therapy via synergistic cuproptosis and disulfidptosis
- PMID: 40780141
- DOI: 10.1016/j.biomaterials.2025.123592
Copper metal-organic framework-based multifaceted strategy for boosting cancer therapy via synergistic cuproptosis and disulfidptosis
Abstract
Cuproptosis, a form of copper-dependent programmed cell death, has emerged as a promising therapeutic target for cancer treatment. However, the efficacy of cuproptosis is undermined by metabolic reprogramming, notably the Warburg effect and the overproduction of glutathione stemming from solute carrier family 7 member 11 (SLC7A11) overexpression. Upregulation of the cystine transporter SLC7A11, while providing a survival advantage, also creates a glucose-dependent metabolic vulnerability in cancer cells, offering a new opportunity for cancer treatment through disulfidptosis under glucose deprivation conditions. Herein, we developed copper-based metal-organic framework nanoparticles, CuSS@876-PEG, which exploit metabolic vulnerabilities by consuming glutathione and subsequently releasing copper ions and the glucose transporter inhibitor BAY-876, thereby eliciting cuproptosis and disulfidptosis. This strategy not only enhances cell death but also stimulates immunogenic cell death, activating the antitumor immune response. To summarize, our innovative strategy provides a multifaceted approach to targeting tumors, paving the way for combined cancer therapy.
Keywords: Cancer therapy; Cuproptosis; Disulfidptosis; Immunogenic cell death; Metal-organic frameworks.
Copyright © 2025 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
