The multipurpose cell factory Aspergillus niger can be engineered to produce hydroxylated collagen
- PMID: 40781722
- PMCID: PMC12333218
- DOI: 10.1186/s13068-025-02681-y
The multipurpose cell factory Aspergillus niger can be engineered to produce hydroxylated collagen
Abstract
Advances in tissue printing and wound healing necessitate a continuous global supply of collagen. Microbial systems are highly desirable to meet these demands as recombinant collagenous proteins can be guaranteed as free from animal viruses. The filamentous cell factory Aspergillus niger has been instrumental for decades in the production of organic acids, enzymes and proteins, yet this fungus has not been explored for recombinant collagen production. In this study, we conducted extensive genetic engineering and fermentation optimization to provide proof of principle that A. niger can produce hydroxylated collagen. We used a modular cloning system to generate a suite of cassettes encoding numerous N-terminal secretion signals, native collagen genes and, additionally, various prolyl-4-hydroxylases (P4H) for protein hydroxylation. Collagen transcription was supported by both luciferase reporter and eGFP tagged approaches. Peptide sequencing from culture supernatant confirmed A. niger produced partially hydroxylated collagen. We then conducted a range of media optimizations and RNA sequencing to, respectively, increase collagen production and identify proteases which we hypothesized were detrimental to recombinant protein titers. Thus, we deleted an endopeptidase encoding gene, protA, which was likely responsible for degrading secreting collagen. Ultimately, we were able to generate an isolate capable of producing hydroxylated collagen at titers of 5 mgL-1 in shake flask models of fermentation. This study thus proves A. niger is a promising heterologous system to address the demand for virus-free collagen.
Keywords: Aspergillus niger; Collagen; Heterologous expression system; Transcriptomics.
© 2025. The Author(s).
Conflict of interest statement
Declarations. Ethics approval and consent to participate: Not applicable. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.
Figures







Similar articles
-
Development of an efficient heterologous protein expression platform in Aspergillus niger through genetic modification of a glucoamylase hyperproducing industrial strain.Microb Cell Fact. 2025 Jul 8;24(1):160. doi: 10.1186/s12934-025-02786-x. Microb Cell Fact. 2025. PMID: 40629383 Free PMC article.
-
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21. Clin Orthop Relat Res. 2025. PMID: 38905450
-
High-throughput library transgenesis in Caenorhabditis elegans via Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS).Elife. 2023 Jul 4;12:RP84831. doi: 10.7554/eLife.84831. Elife. 2023. PMID: 37401921 Free PMC article.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
References
LinkOut - more resources
Full Text Sources