Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Sep;35(9):983-999.
doi: 10.1080/13543776.2025.2545784. Epub 2025 Aug 17.

The potential of bacteriophages in treating multidrug-resistant ESKAPE pathogen infections

Affiliations
Review

The potential of bacteriophages in treating multidrug-resistant ESKAPE pathogen infections

Izadora Dillis Faccin et al. Expert Opin Ther Pat. 2025 Sep.

Abstract

Introduction: Antimicrobial resistance (AMR) and the emergence of multidrug-resistant bacteria, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens, have significantly reduced the effectiveness of antibiotics. In this context, bacteriophage therapy offers a promising alternative, targeting specific bacterial strains, disrupting biofilms, minimizing side effects, and preserve beneficial microbiota.

Areas recovered: This review focuses on patent applications and patents granted up to 18 October 2024, related to the application of bacteriophages or their derivatives in treating infections caused by ESKAPE pathogens, as well as the methods for selecting bacteriophages.

Expert opinion: Phage-based strategies to overcome AMR have piqued the interest of the scientific community owing to the limited efficacy of new antimicrobial agents. Bacteriophages, co-evolved with antimicrobial-resistant bacteria, offer a diverse and cost-effective arsenal, especially beneficial for low- to middle-income countries. This review examines various patents on phage applications, including those on computational methods used for improving phage cocktail design, classical phages or phage-derived proteins, and potential combinations of antimicrobial agents and phages. The increasing number of phage-related patents, especially in China and the United States, suggests that the antimicrobial activity of bacteriophages is a research hotspot.

Keywords: Antimicrobial resistance; alternative therapy; bacterial viruses; novel antimicrobials; phage particles; phage therapy; therapeutic strategies.

PubMed Disclaimer

Substances