Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Aug 6;59(4):511-524.
doi: 10.33594/000000797.

Regulation of αKlotho

Affiliations
Free article
Review

Regulation of αKlotho

Julia Vogt et al. Cell Physiol Biochem. .
Free article

Abstract

Since its discovery in 1997, αKlotho has gained a lot of attention due to its powerful anti-aging and health-promoting properties. It exists as a membrane-bound protein or as a soluble factor. Membrane-bound αKlotho is an essential cofactor for fibroblast growth factor 23 (FGF23), thereby being involved in the regulation of renal phosphate and vitamin D metabolism. Soluble αKlotho (sKL) is present in different body fluids and exerts hormone-like effects. Through the αKlotho-FGF23 signaling axis, FGF23 regulates phosphate excretion by downregulating Na+-dependent phosphate transporter (NaPi-2a). In addition, this axis suppresses expression of 1α-hydroxylase, thereby reducing active vitamin D (calcitriol) serum concentration. Disruptions of this axis lead to deranged mineral metabolism. Low levels of αKlotho and elevated FGF23 are early biomarkers for different diseases, including chronic kidney disease (CKD) and cardiovascular diseases (CVD). In CKD, decreased renal αKlotho expression and enhanced FGF23 production contribute to worsening kidney function. Activated transforming growth factor b1 (TGF-b1) signaling, promoting renal fibrosis, contributes to the pathophysiology. Moreover, FGF23 directly induces left ventricular hypertrophy (LVH) through FGF receptor-induced calcineurin/nuclear factor of activated T cells (NFAT) signaling in CKD. Our review aims to comprehensively summarize the regulation and function of αKlotho, highlighting its central role in maintaining mineral metabolism and its therapeutic potential in age-related and chronic diseases.

Keywords: αKlotho ; FGF23 ; CKD ; Longevity.

PubMed Disclaimer

Conflict of interest statement

Michael Föller received speaker fees from Kyowa Kirin without relationship to this article.

LinkOut - more resources