Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Aug 11.
doi: 10.1007/s13105-025-01117-3. Online ahead of print.

The multifaceted regulation of white adipose tissue browning and their therapeutic potential

Affiliations
Review

The multifaceted regulation of white adipose tissue browning and their therapeutic potential

Abhishek Satheesan et al. J Physiol Biochem. .

Abstract

Adipose tissue browning, the conversion of white adipose tissue (WAT) into brown or beige adipose tissue, offers potential for combating obesity and metabolic disorders. This review delves in to the transcriptional and epigenetic regulation of WAT browning and how it impacts metabolic health and its significance in various disease conditions. Further the review explains how various external factors such as diet and exercise play an influential role in the regulation of WAT browning. UCP1 gene, which plays a crucial role in cellular thermogenesis is found to be the major mediator of this phenomenon along with functional dynamics of mitochondria. Gut microbiome has been another focus point in this review that highlights how alterations to the composition of different species of bacteria in gut microbiome can directly influence WAT browning. Finally the review discusses the various pharmaceutical and neutraceutical options under research that targets WAT browning to improve metabolic status of an individual. Therapeutic strategies include β3-adrenergic receptor agonists, GLP-1 receptor agonists, AMPK activators, and natural compounds such as capsaicin and resveratrol. Emerging CRISPR/Cas9 gene therapies aim to induce WAT browning. Clinical evidence to prove the significance of this phenomena is currently limited but growing rapidly as seen in the number of clinical trials that are undergoing currently, therefore the review strongly rely upon animal model and cell culture based studies to justify this area of novel research. Despite its potential, challenges like individual variability, long-term safety, and complex gut microbiome interactions remain. Future research should target novel pathways, optimize therapeutic regimens, and personalize treatments.

Keywords: Browning; Epigenetics; Metabolism; Microbiota; Therapeutics; White adipose tissue.

PubMed Disclaimer

Conflict of interest statement

Declarations. Ethics approval and consent to participate: Not applicable. Competing interests: The authors declare no competing interests.

Similar articles

  • Short-Term Memory Impairment.
    Cascella M, Al Khalili Y. Cascella M, et al. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
  • Ndufa8 promotes white fat Browning by improving mitochondrial respiratory chain complex I function to ameliorate obesity by in vitro and in vivo.
    Fu Q, Lv R, Wang S, Wang W, Li Y, Qiu G, Chen X, Sun C. Fu Q, et al. Cell Signal. 2024 Oct;122:111340. doi: 10.1016/j.cellsig.2024.111340. Epub 2024 Aug 8. Cell Signal. 2024. PMID: 39127135
  • The Black Book of Psychotropic Dosing and Monitoring.
    DeBattista C, Schatzberg AF. DeBattista C, et al. Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
  • Management of urinary stones by experts in stone disease (ESD 2025).
    Papatsoris A, Geavlete B, Radavoi GD, Alameedee M, Almusafer M, Ather MH, Budia A, Cumpanas AA, Kiremi MC, Dellis A, Elhowairis M, Galán-Llopis JA, Geavlete P, Guimerà Garcia J, Isern B, Jinga V, Lopez JM, Mainez JA, Mitsogiannis I, Mora Christian J, Moussa M, Multescu R, Oguz Acar Y, Petkova K, Piñero A, Popov E, Ramos Cebrian M, Rascu S, Siener R, Sountoulides P, Stamatelou K, Syed J, Trinchieri A. Papatsoris A, et al. Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085. Epub 2025 Jun 30. Arch Ital Urol Androl. 2025. PMID: 40583613 Review.
  • Systemic Inflammatory Response Syndrome.
    Baddam S, Burns B. Baddam S, et al. 2025 Jun 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jun 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31613449 Free Books & Documents.

References

    1. Wronska A, Kmiec Z (2012) Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf) 205(2):194–208. https://doi.org/10.1111/j.1748-1716.2012.02409.x - DOI - PubMed
    1. Langin D (2006) Control of fatty acid and glycerol release in adipose tissue lipolysis. C R Biol 329(8):598–607. https://doi.org/10.1016/j.crvi.2005.10.008 - DOI - PubMed
    1. Scheja L, Heeren J (2019) The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 15(9):507–524. https://doi.org/10.1038/s41574-019-0230-6 - DOI - PubMed
    1. Brestoff JR, Wilen CB, Moley JR et al (2021) Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab 33(2):270–282e8. https://doi.org/10.1016/j.cmet.2020.11.008 - DOI - PubMed
    1. Ackermann J, Arndt L, Fröba J et al (2024) IL-6 signaling drives self-renewal and alternative activation of adipose tissue macrophages. Front Immunol. https://www.frontiersin.org/journals/immunology/articles/ https://doi.org/10.3389/fimmu.2024.1201439 . 15-2024 - DOI - PubMed - PMC

LinkOut - more resources