Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 31.
doi: 10.1039/d5sc04459f. Online ahead of print.

Distinct structural interactions of polyadenine and polythymine on gold nanoparticles: from single strands to duplexes

Affiliations

Distinct structural interactions of polyadenine and polythymine on gold nanoparticles: from single strands to duplexes

Manuel Núñez-Martínez et al. Chem Sci. .

Abstract

Motivated by potential applications in fields such as medicine or materials science, various methodologies have been developed for the preparation of so-called spherical nucleic acids, based on oligonucleotides and metal nanoparticles. Despite optimization through various parameters such as loading efficiency or nanoconjugate stability, much remains to be known regarding the actual conformations of oligonucleotides and their interactions with the nanoparticle surface. We employed a combination of spectroscopic techniques and liquid transmission electron microscopy to analyze the interactions and conformations adopted by polyAdenine (polyA) and polyThymine (polyT) chains in contact with gold nanoparticles (AuNPs). These studies revealed the presence of AuNP@polyA dimers, with polyA strands forming duplexes, whereas polyT forms isolated strands on the AuNPs. The presence or absence of polyA duplexes on AuNPs can be modulated by external stimuli such as temperature or NaCl. This study contributes to understanding the interactions and secondary structure of oligonucleotides on AuNPs.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. (a) Graphical illustration of secondary structures of polyA at different pH values. (b) Graphical illustration of AuNP@polyA, at different DNA concentrations on the gold surface.
Fig. 1
Fig. 1. (a) Schematic illustration of the formation of AuNP@polyA duplexes on AuNPs. (b) CD spectra of AuNP@polyA at pH = 7 and free polyA strands at both pH = 3 and pH = 7. (c) UV-vis spectra of AuNP@citrate and AuNP@polyA.
Fig. 2
Fig. 2. (a) HAADF-STEM images of AuNP@polyA in a liquid environment, showing the presence of dimers and individual particles. (b) Two-component Gaussian mixture model (GMM) showing the presence of AuNP@polyA duplexes and single AuNP@polyA.
Fig. 3
Fig. 3. Scatter plots of the trajectories of the center position of AuNP@polyA. The center position of each particle is tracked across a time series of HAADF-STEM images with an electron dose of 20 e per Å2 per frame (a) and 50 e per Å2 per frame (b). When the electron dose is low, AuNP@polyA dimers move as stable units (a), whereas for the higher electron dose the polyA structure might be disrupted by the high energy electron beam, ultimately leading to fusion of AuNPs (b).
Fig. 4
Fig. 4. EDX spectra and elemental maps for AuNP@polyA under dry conditions, confirming the presence of N and P (from polyA) around AuNPs.
Fig. 5
Fig. 5. (a) Schematic illustration of AuNP@polyT conjugates. (b) UV-vis spectra of AuNP@citrate and AuNP@polyT. (c) CD spectra of AuNP@polyT at pH = 7 (black), polyT (red) at pH = 7 and polyT (pink) at pH = 3. (d) Representative liquid-phase TEM image of AuNP@polyT.
Fig. 6
Fig. 6. (a) Schematic illustration of the behavior of AuNP@polyA duplexes in the presence of added NaCl. (b) Fluorescence spectra of AuNP@FAM-polyA before and after addition of NaCl (100 mM). (c) CD spectra of AuNP@polyA at different NaCl concentrations, as labeled.
Fig. 7
Fig. 7. CD spectra at different temperatures for AuNP@polyA (a) and AuNP@polyT (b).
Fig. 8
Fig. 8. (a) CD spectra of AuNP@polyA prepared at different polyA/AuNP ratios. (b) Correlation between the number of polyA strands on AuNPs and CD intensity at 265 nm.

Similar articles

  • Short-Term Memory Impairment.
    Cascella M, Al Khalili Y. Cascella M, et al. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
  • Sexual Harassment and Prevention Training.
    Cedeno R, Bohlen J. Cedeno R, et al. 2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 36508513 Free Books & Documents.
  • Information-Providing Magnetic Supraparticles: Particle Designs to Record Environmental Stimuli with Readout by Magnetic Particle Spectroscopy.
    Müssig S, Wolf A, Kämäräinen T, Mandel K. Müssig S, et al. Acc Mater Res. 2025 May 23;6(7):842-852. doi: 10.1021/accountsmr.5c00027. eCollection 2025 Jul 25. Acc Mater Res. 2025. PMID: 40741230
  • Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
    Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, Spijker R, Hooft L, Emperador D, Domen J, Tans A, Janssens S, Wickramasinghe D, Lannoy V, Horn SRA, Van den Bruel A; Cochrane COVID-19 Diagnostic Test Accuracy Group. Struyf T, et al. Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
  • Management of urinary stones by experts in stone disease (ESD 2025).
    Papatsoris A, Geavlete B, Radavoi GD, Alameedee M, Almusafer M, Ather MH, Budia A, Cumpanas AA, Kiremi MC, Dellis A, Elhowairis M, Galán-Llopis JA, Geavlete P, Guimerà Garcia J, Isern B, Jinga V, Lopez JM, Mainez JA, Mitsogiannis I, Mora Christian J, Moussa M, Multescu R, Oguz Acar Y, Petkova K, Piñero A, Popov E, Ramos Cebrian M, Rascu S, Siener R, Sountoulides P, Stamatelou K, Syed J, Trinchieri A. Papatsoris A, et al. Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085. Epub 2025 Jun 30. Arch Ital Urol Androl. 2025. PMID: 40583613 Review.

References

    1. Mirkin C. A. Petrosko S. H. Inspired Beyond Nature: Three Decades of Spherical Nucleic Acids and Colloidal Crystal Engineering with DNA. ACS Nano. 2023;17:16291–16307. doi: 10.1021/acsnano.3c06564. - DOI - PubMed
    1. Zhou W. Lim Y. Lin H. Lee S. Li Y. Huang Z. Du J. S. Lee B. Wang S. Sánchez-Iglesias A. Grzelczak M. Liz-Marzán L. M. Glotzer S. C. Mirkin C. A. Colloidal Quasicrystals Engineered with DNA. Nat. Mater. 2024;23:424–428. doi: 10.1038/s41563-023-01706-x. - DOI - PubMed
    1. Li L. Xing H. Zhang J. Lu Y. Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications. Acc. Chem. Res. 2019;52:2415–2426. doi: 10.1021/acs.accounts.9b00167. - DOI - PMC - PubMed
    1. Nicolson F. Ali A. Kircher M. F. Pal S. DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics. Adv. Sci. 2020;7:2001669. doi: 10.1002/advs.202001669. - DOI - PMC - PubMed
    1. Huang C. Han Z. Evangelopoulos M. Mirkin C. A. CRISPR Spherical Nucleic Acids. J. Am. Chem. Soc. 2022;144:18756–18760. doi: 10.1021/jacs.2c07913. - DOI - PMC - PubMed

LinkOut - more resources