Investigating the molecular transmission dynamics of blaNDM in antibiotic-selective environments
- PMID: 40788082
- DOI: 10.1128/jb.00133-25
Investigating the molecular transmission dynamics of blaNDM in antibiotic-selective environments
Abstract
Carbapenem resistance mediated by blaNDM-encoded metallo-beta-lactamases is often linked to ISAba125, an insertion sequence from the IS30 family, which is widely distributed among critical and high-priority bacterial pathogens. The rapid dissemination of ISAba125-linked blaNDM in both nosocomial and community-acquired infections presents a serious challenge to healthcare systems and pharmaceutical industries. Despite the urgency of this issue, the factors driving blaNDM spread and the molecular mechanisms governing ISAba125 mobility remain poorly understood. In this study, we engineered the genomes of Vibrio cholerae and Escherichia coli to investigate the mobility of blaNDM under controlled conditions both with and without the genetically linked ISAba125. We also examined the transmission efficiency and the stability of blaNDM in environments with and without sublethal antibiotic concentrations. Our in vitro findings were validated in a rabbit ileal loop model. The results revealed that antibiotic pressure significantly influences the mobility of blaNDM, shedding light on the molecular dynamics of its transmission. These insights are crucial for developing strategies to curb the spread of blaNDM and mitigate the growing threat of carbapenem resistance in bacterial pathogens.IMPORTANCEInsertion sequences are the simplest form of mobile genetic elements that play a critical role in the adaptation of bacteria, allowing them to rapidly acquire new traits like resistance genes that enhance their survival. ISAba125 is one such insertion sequence that facilitates the spread of blaNDM, contributing to the global challenge of carbapenem resistance. In this study, we developed reporter strains that could be used as a valuable tool for investigating the dynamics of ISAba125-linked blaNDMsh-ble and evaluated the transposition frequency of ISAba125-linked blaNDMsh-ble in the presence and absence of sublethal concentration of antibiotics. Our results demonstrated that ISAba125 enhances the spread of blaNDMsh-ble under sublethal concentration of antibiotics that induces SOS response.
Keywords: antibiotic resistance; horizontal gene transfer; insertion sequences; metallo-beta-lactamases; mobile genetic elements.
Similar articles
-
Whole genome analysis reveals the distribution and diversity of plasmid reservoirs of NDM and MCR in commercial chicken farms in China.Microbiol Spectr. 2025 Jul;13(7):e0290024. doi: 10.1128/spectrum.02900-24. Epub 2025 Jun 9. Microbiol Spectr. 2025. PMID: 40488461 Free PMC article.
-
Genomic characterization of plasmids harboring blaNDM-1, blaNDM-5, and blaNDM-7 carbapenemase alleles in clinical Klebsiella pneumoniae in Pakistan.Microbiol Spectr. 2025 Jul;13(7):e0235924. doi: 10.1128/spectrum.02359-24. Epub 2025 May 22. Microbiol Spectr. 2025. PMID: 40401976 Free PMC article.
-
Insight into phylogenomic bias of blaVIM-2 or blaNDM-1 dissemination amongst carbapenem-resistant Pseudomonas aeruginosa.Int J Antimicrob Agents. 2023 May;61(5):106788. doi: 10.1016/j.ijantimicag.2023.106788. Epub 2023 Mar 15. Int J Antimicrob Agents. 2023. PMID: 36924802
-
Immunogenicity and seroefficacy of pneumococcal conjugate vaccines: a systematic review and network meta-analysis.Health Technol Assess. 2024 Jul;28(34):1-109. doi: 10.3310/YWHA3079. Health Technol Assess. 2024. PMID: 39046101 Free PMC article.
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
LinkOut - more resources
Full Text Sources