Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Aug 9:84:108685.
doi: 10.1016/j.biotechadv.2025.108685. Online ahead of print.

Bio-upcycling PET waste: Advances in enzymatic hydrolysis and biosynthesis of value-added products

Affiliations
Review

Bio-upcycling PET waste: Advances in enzymatic hydrolysis and biosynthesis of value-added products

Yu Zhou et al. Biotechnol Adv. .

Abstract

With excellent mechanical properties and chemical stability, poly (ethylene terephthalate) (PET), an engineering plastic, is widely applied in textiles and packaging. However, the widespread use and low biodegradability of PET have resulted in significant environmental pollution. Recent advances in PET hydrolase discovery and engineering have driven the rapid advancement of PET bio-recycling, while efficient PET hydrolases can depolymerize PET into monomers under mild conditions, providing a sustainable approach to potentially addressing the plastic pollution issue. However, PET enzymatic hydrolysis still faces some technical challenges, such as poor stability of the hydrolases and low efficiency in degrading high-crystalline PET. Thus, this review summarizes recent advances in strategies to enhance the efficiency of PET enzymatic hydrolysis and explores the interplay of factors affecting PET hydrolysis efficiency. Furthermore, we highlight the progress in metabolic engineering approaches for the biotransformation of PET degradation products into higher value chemicals, providing insights into achieving efficient PET bio-recycling. This review systematically integrates key factors for enhancing the PET enzymatic hydrolysis efficiency and showcases successful examples of PET waste further valorization, providing valuable references and insights for the industrialization of PET bio-upcycling.

Keywords: Biotransformation; Enzymatic hydrolysis; Metabolic engineering; Poly (ethylene terephthalate); Poly (ethylene terephthalate) hydrolase.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources