Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2025 Jul 16:2025.07.11.25331381.
doi: 10.1101/2025.07.11.25331381.

Psychiatric disorders converge on common pathways but diverge in cellular context, spatial distribution, and directionality of genetic effects

Worrawat Engchuan  1   2 Omar Shanta  3   4 Kuldeep Kumar  5 Jeffrey R MacDonald  1   2 Bhooma Thiruvahindrapuram  1   2 Omar Hamdan  1   2 Marieke Klein  4   6   7 Adam Maihofer  4   8   9 James Guevara  4 Oanh Hong  4 Guillaume Huguet  10 Molly Sacks  3   4 Mohammad Ahangari  4 Rayssa M M W Feitosa  1   2   11 Kara Han  1   2 Marla Mendes  1   2 Xiaopu Zhou  1   2 Nelson X Bautista  1   2 Giovanna Pellecchia  1   2 Zhouzhi Wang  1   2 Daniele Merico  1   12 Ryan K C Yuen  2   13 Brett Trost  2   13   14 Ida Sønderby  15   16   17 Mark J Adams  18 Rolf Adolfsson  19 Ingrid Agartz  20   21   22 Allison E Aiello  23 Martin Alda  24   25 Judith Allardyce  26 Ananda B Amstadter  27 Till F M Andlauer  28 Ole A Andreassen  15   16   29 María S Artigas  30   31   32   33 S Bryn Austin  34   35   36 Muhammad Ayub  37 Dewleen G Baker  4 Nick Bass  38 Bernhard T Baune  39   40   41 Maximilian Bayas  42 Klaus Berger  43 Joanna M Biernacka  44   45 Tim Bigdeli  46 Jonathan I Bisson  47 Douglas Blackwood  26 Marco Boks  48 David Braff  4 Elvira Bramon  38 Gerome Breen  49 Tanja Brueckl  50 Richard A Bryant  51 Cynthia M Bulik  52   53   54 Joseph Buxbaum  55 Murray J Cairns  56   57 Jose M Caldas-de-Almeida  58 Megan Campbell  59 Dominique Campion  60 Vaughan J Carr  61   62 Enrique Castelao  63 Boris Chaumette  64 Sven Cichon  65 David Cohen  66   67 Aiden Corvin  68 Nicholas Craddock  69 Jennifer Crosbie  70   71 Darrina Czamara  72 Udo Dannlowski  73   74 Franziska Degenhardt  65 Douglas L Delahanty  75 Astrid Dempfle  76 Guillaume Desachy  77   78 Arianna Di Florio  79 Faith B Dickerson  80 Srdjan Djurovic  15   81   82 Katharina Domschke  83 Lisa Douglas  84 Ole K Drange  82   85 Laramie E Duncan  86   87 Howard J Edenberg  88   89 Tonu Esko  90 Steve Faraone  91 Norah C Feeny  92 Andreas J Forstner  93   94   95   96   97 Barbara Franke  98   99 Mark Frye  100 Dong-Jing Fu  101 Janice M Fullerton  102   103 Anna Gareeva  104   105   106   107 Linda Garvert  108 Justine M Gatt  51 Pablo Gejman  109 Daniel H Geschwind  110 Ina Giegling  111 Stephen J Glatt  112 Joe Glessner  113   114   115 Fernando S Goes  116 Katherine Gordon-Smith  117 Hans Grabe  108 Melissa J Green  118 Michael F Green  119   120 Tiffany Greenwood  4 Maria Grigoroiu-Serbanescu  121 Raquel E Gur  122 Ruben C Gur  122 Jose Guzman-Parra  123 Jan Haavik  124 Tim Hahn  74 Hakon Hakonarson  113   114   115 Joachim Hallmayer  125   126 Marian L Hamshere  127 Annette M Hartmann  128 Arsalan Hassan  129 Caroline Hayward  130 Johannes Hebebrand  131   132 Sian M J Hemmings  133   134 Stefan Herms  65 Marisol Herrera-Rivero  39   73   135 Anke Hinney  132   136   137 Georg Homuth  138 Andrés Ingason  139 Lucas T Ito  140   141   142   143   144 Nakao Iwata  145 Ian Jones  146 Lisa A Jones  117 Lina Jonsson  147 Erik G Jönsson  20   21 René S Kahn  143 Robert Karlsson  148 Milissa L Kaufman  149   150 John R Kelsoe  4 James L Kennedy  70   151 Anthony King  152 Tilo Kircher  153   154 George Kirov  155 Per Knappskog  156   157 James A Knowles  158   159 Nene Kobayashi  160 Karestan C Koenen  161 Bettina Konte  128 Mayuresh Korgaonkar  162 Kaarina Kowalec  148 Marie-Odile Krebs  64 Mikael Landén  147   148 Claudine Laurent-Levinson  66   163 Lauren A Lebois  150   164 Doug Levinson  86 Cathryn Lewis  49   165 Qingqin Li  101 Israel Liberzon  166 Greg Light  4 Sandra K Loo  167 Yi Lu  148   168 Susanne Lucae  50 Charles Marmar  169 Nicholas G Martin  170 Fermin Mayoral  123 Andrew M McIntosh  171 Katie A McLaughlin  172 Samuel A McLean  173   174 Andrew McQuillin  38 Sarah E Medland  175   176   177 Andreas Meyer-Lindenberg  178 Vihra Milanova  179 Philip B Mitchell  118 Esther Molina  180   181 Bryan Mowry  182   183 Bertram Muller-Myhsok  184   185 Niamh Mullins  140   143   144 Robin Murray  186 Markus M Nöthen  65 John I Nurnberger Jr  187   188 Kevin S O'Connell  29   82 Roel A Ophoff  189 Holly K Orcutt  190 Michael J Owen  191 Aarno Palotie  192   193   194 Carlos Pato  195 Michele Pato  195 Joanna Pawlak  196 Triinu Peters  132   136   137 Tracey L Petryshen  197 Giorgio Pistis  63 James B Potash  116 John Powell  198 Martin Preisig  63 Digby Quested  199 Josep A Ramos-Quiroga  30   31   32   33 Andreas Reif  200 Kerry J Ressler  150   201   202 Marta Ribasés  30   31   32   33 Marcella Rietschel  203 Victoria B Risbrough  4   8 Margarita Rivera  181   204 Alex O Rothbaum  201   205 Barbara O Rothbaum  201 Dan Rujescu  111 Takeo Saito  145 Alan R Sanders  206 Russell J Schachar  70   71 Peter R Schofield  118 Eva C Schulte  65   207   208   209   210 Thomas G Schulze  209 Laura J Scott  211 Soraya Seedat  212   213 Christina Sheerin  27 Jianxin Shi  214 Pamela Sklar  215 Susan Smalley  167   216 Olav B Smeland  29   82 Jordan W Smoller  217   218 Edmund Sonuga-Barke  219 David St Clair  220 Nils Eiel Steen  29   82   221 Dan Stein  222 Frederike Stein  153   154 Murray B Stein  4   223   224 Fabian Streit  178   203   225   226 Neal Swerdlow  4 Florence Thibaut  227   228 Johan H Thygesen  38   229 Ilgiz Timerbulatov  106   230   231 Claudio Toma  232   233 Edward Trapido  234 Micheline Tremblay  235 Ming T Tsuang  4 Monica Uddin  236 Marquis P Vawter  237 John B Vincent  70   151 Henry Völzke  238 James T Walters  191 Cynthia S Weickert  103   118 Lauren A Weiss  77 Myrna M Weissman  239   240 Thomas Werge  241 Stephanie H Witt  203   225 Miguel Xavier  242 Robert Yolken  243 Ross M Young  244   245 Tetyana Zayats  246   247   248 Lori A Zoellner  249 AGP Consortium, PEIC Psychosis Endophenotypes International ConsortiumADHD Working Group of the Psychiatric Genomics ConsortiumAutism Working Group of the Psychiatric Genomics Consortium, Bipolar Disorder Working Group of the Psychiatric Genomics ConsortiumMajor Depressive Disorder Working Group of the Psychiatric Genomics ConsortiumPTSD Working Group of the Psychiatric Genomics ConsortiumSchizophrenia Working Group of the Psychiatric Genomics ConsortiumCNV Working Group of the Psychiatric Genomics ConsortiumKimberley Kendall  69 Brien Riley  27 Naomi R Wray  250   251 Michael C O'Donovan  69 Patrick F Sullivan  148   252 Sandra Sanchez-Roige  4   253   254 Caroline M Nievergelt  4   255 Sébastien Jacquemont  5   256 Stephen W Scherer  1   2   13   257 Jonathan Sebat  4   253   258   259
Affiliations

Psychiatric disorders converge on common pathways but diverge in cellular context, spatial distribution, and directionality of genetic effects

Worrawat Engchuan et al. medRxiv. .

Abstract

Psychiatric conditions share common genes, but mechanisms that differentiate diagnoses remain unclear. We present a multidimensional framework for functional analysis of rare copy number variants (CNVs) across 6 diagnostic categories, including schizophrenia (SCZ), autism (ASD), bipolar disorder (BD), depression (MDD), PTSD, and ADHD (N = 574,965). Using gene-set burden analysis (GSBA), we tested duplication (DUP) and deletion (DEL) burden across 2,645 functional gene sets defined by the intersections of pathways, cell types, and cortical regions. While diagnoses converge on shared pathways, mixed-effects modeling revealed divergence of pathway effects by cell type, brain region, and gene dosage. Factor analysis identified latent dimensions aligned with clinical axes. A primary factor (F1) captured reciprocal dose-dependent effects of DUP and DEL in SCZ reflecting positive and negative effects in excitatory versus inhibitory neurons and association versus sensory cortex. SCZ and ASD were both strongly aligned with F1 but with opposing directionalities. Orthogonal factors highlighted neuronal versus non-neuronal effects in mood disorders (F2) and differential spatial distributions of DEL effects in ADHD and MDD (F3). High-impact CNVs at 16p11.2 and 22q11.2 were enriched for combinations of cell-type-specific genes involved in pathways consistent with our broader findings. These results reveal molecular and cellular mechanisms that are broadly shared across psychiatric traits but differ between diagnostic categories in context and directionality.

PubMed Disclaimer

Conflict of interest statement

Competing interests S.W.S. has served on the Scientific Advisory Committee of Population Bio and has been involved in Deep Genomics. Intellectual property from aspects of his research held at the Hospital for Sick Children are licensed to Athena Diagnostics and Population Bio.

Figures

Fig. 1|
Fig. 1|. Investigating association of pathways, cell types and brain regions by Gene Set Burden Analysis (GSBA).
Gene sets were derived for Pathway (from GO, KEGG, REACTOME, and BioCarta), Cell type (from single cell study, Velmeshev et al.), and Cortical regions (from Glasser parcellation of the Allen Brain Atlas). Case-control association of CNV burden collapsed across gene sets, was then tested by logistic regression and meta-analysis was performed across genotyping platforms. Functional gene set associations were tested for 6 major psychiatric conditions (ASD, ADHD, SCZ, PTSD, MDD, BD).
Fig. 2|
Fig. 2|
Rare CNVs association analysis results in molecular pathways and neuronal cell types. (a) Enrichment map showing clusters of functional modules that are significantly associated with any condition. CNV associations are color-coded as a portion with a node where red indicates a DEL association in ASD, orange indicates a DEL association in SCZ, blue indicates a DUP association in SCZ, and yellow indicates a DEL association in ADHD. Gene-sets not forming a cluster of 3 or more members were excluded. Gene set clusters are listed in Table S4. (b) The heatmap represents the results at the pathway-cluster level, with color indicating z-score from meta-analysis. (c) A UMAP plot displays cell clusters colored by prenatal (teal) and postnatal (red) periods. (d) Heatmaps show association results at the cell type level with color indicating z-score, where red represents a higher burden of CNVs in cases and blue represents a depletion of CNVs burden in cases. An asterisk indicates statistically significant associations (q-value <0.1). Summary statistics of the initial primary gene sets and for the final set of pathway clusters are in Tables S3, and S5 respectively.
Fig. 3|
Fig. 3|
Rare (a) DEL and (c) DUP association analysis results of the cortical brain regions in the 6 conditions. Color indicates the association level (z-score) with red indicating the CNV association with the cases, while blue indicates the depletion of CNVs in cases (Table S3). Correlation results between CNV associations in (b) DEL and (d) DUP against the dominant transcriptomic brain gradient (PC1 of AHBA). Each circle represents a brain region gene set. Kendall’s Tau and corresponding q-value are shown in the title of each scatterplot. Solid diagonal trend line indicates significant correlation (qSPIN<0.05). The cortical map at the top left corner illustrates the transcriptomic gradient from PC1 AHBA.
Fig. 4|
Fig. 4|. Associations of pathways with psychiatric traits vary by cell-type and gene dosage.
(a) Schematic illustrating how gene sets were defined by intersecting pathway, cell type, and cortical region dimensions. Example intersections include Chromatin-ExNeu, Chromatin-Assoc, ExNeu-Assoc, and Chromatin-ExNeu-Assoc. (b) Full model R2 estimates showing the total variance in gene-set z-scores explained by main effects and interaction terms for each diagnosis. Models included pathway, cell type, brain region, dosage, and all combinations of two-way and three-way interactions. (c) R2 estimates for individual interaction terms, quantifying the contribution of each interaction to the explained variance. The pathway×celltype×dosage interaction consistently explains the largest proportion of variance across diagnoses, highlighting the importance of dosage-sensitive and cell-type-specific pathway effects (Tables S9–S10).
Fig. 5|
Fig. 5|. Differentiation of diagnostic categories based on gene-dosage effects in pathways by cell type and brain region.
(a) Genetic correlations between diagnostic categories when each diagnosis-dosage combination is treated as an independent component, see also Table S11, *p<0.05) **q<0.05). Diagnosis-dosages with factor loadings >0.25 were grouped and labeled to highlight psychiatric traits contributing to F1, F2 and F3. (b): Factor loadings of DEL and DUP for disorders reveal a distinct profile for each diagnostic category. (c, g, k) Gene set-factor scores for the three factors, cell types and pathways were ordered using a simple sign-based bi-clustering algorithm (see methods) (Table S14). (d,h,i) Factor scores are representative of dose-dependent effects of genes. Scatterplots of gene set effect sizes (z-score) are shown for the top 2 diagnosis-dosage groupings with highest absolute factor loadings for factor F1, F2, and F3, and factor score of each gene set is indicated using the same color scale as in panels c,g,k. Solid trend lines indicate significant correlation between the diagnosis-dosage pair. (e,j,m) Factor analysis of gene sets with genome-wide significant loci removed yielded results with highly concordant gene set factor scores (e,f,i,j,m,n; tau_F1=0.45, tau_F2=0.53, tau_F3=0.32, p<2.2e-16; Table S14), demonstrating that these patterns are not attributable to a select subset of major loci.
Fig. 6|
Fig. 6|. Cell-type specific expression of genes within major CNV loci 16p11.2 BP4-BP5 and 22q11.2 A-D suggests that the functional influence of a CNV in the brain may be driven by distinct pathway effects across a variety of cell types.
CNV associations displayed in (a) and (d) were obtained from Shanta et al. Colors indicate the association direction and effect size (z-score), and asterisks indicate FDR<10% results. (b) and (e) heatmaps show log2 fold-change of cell type expression of the genes within each locus. The colors indicate the differential expression level. CNV-gene-gene-set networks in (c) and (f) display the CNV genes and their participation in the pathway-cell-type stratified gene sets. Shapes represent different entities of the network where the big circle in the middle is a GWS locus, peripheral circles are genes in the locus. A gene may be linked to one or more pathways (diamond) and at the end of the pathway, a cell type (square) is connected to indicate the gene membership of one or more stratified pathways of the same cell type. The color of diamond nodes indicates the group of pathways.

References

    1. Parikshak N. N. et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013). - PMC - PubMed
    1. Birnbaum R. & Weinberger D. R. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat. Rev. Neurosci. 18, 727–740 (2017). - PubMed
    1. Walsh T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008). - PubMed
    1. McCarthy S. E. et al. Microduplications of 16p11.2 are associated with schizophrenia Nat. Genet. 41, 1223–1227 (2009). - PMC - PubMed
    1. Marshall C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017). - PMC - PubMed

Publication types

LinkOut - more resources