Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 11:92:161-173.
doi: 10.1016/j.ymben.2025.08.003. Online ahead of print.

Heterologous integration-assisted metabolic engineering in Escherichia coli for elevated D-pantothenic acid production

Affiliations

Heterologous integration-assisted metabolic engineering in Escherichia coli for elevated D-pantothenic acid production

Kuo Zhao et al. Metab Eng. .

Abstract

D-pantothenic acid (D-PA) is a vital water-soluble vitamin with diverse industrial applications, driving the demand for efficient microbial production. Here, we rationally engineered an Escherichia coli strain to enhance D-PA production through metabolic engineering. First, to enhance carbon utilization efficiency, competing byproduct pathways were deleted and the pentose phosphate pathway was downregulated. Next, the glucose and β-alanine transport systems were strategically enhanced, and cofactor availability was improved through engineering NADPH regeneration and ATP recycling pathways. Subsequently, pathway engineering was applied to fine-tune the expression of heterologous enzymes, thereby enhancing the metabolic pull toward D-PA biosynthesis. To enhance the supply of one-carbon donor required by the rate-limiting enzyme ketopantoate hydroxymethyltransferase (KPHMT), a heterologous 5,10-methylenetetrahydrofolate biosynthesis module was introduced. Finally, dynamic regulation of isocitrate synthase and pantothenate kinase was implemented to balance cell growth and D-PA production. As a result of the integrated metabolic engineering strategies, the final strain DPZ28/P31 achieved a D-PA titer of 98.6 g/L and a yield of 0.44 g/g glucose in a two-stage fed-batch fermentation. These findings provide valuable insights for industrial-scale production of D-PA and related compounds.

Keywords: Cofactor regeneration; D-pantothenic acid; Dynamic regulation; Escherichia coli; One-carbon donor; Substrate transport.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources