Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 30;15(15):2235.
doi: 10.3390/ani15152235.

Investigation of Bacterial Species and Their Antimicrobial Drug Resistance Profile in Feline Urinary Tract Infection in Thailand

Affiliations

Investigation of Bacterial Species and Their Antimicrobial Drug Resistance Profile in Feline Urinary Tract Infection in Thailand

Kankanit Lapcharoen et al. Animals (Basel). .

Abstract

Feline urinary tract infections (UTIs) present a common challenge in veterinary practice, underscoring the importance of understanding local bacterial pathogens and antimicrobial resistance (AMR). This study determined bacterial prevalence and antimicrobial susceptibility in cats at Kasetsart University's Veterinary Teaching Hospital in Bangkok, Thailand. Of the 543 cystocentesis urine samples collected from 428 cats, 115 (21.2%) tested positive for bacterial cultures, leading to a diagnosis of UTIs in 95 cats (22.2%). The most prevalent isolates included Escherichia coli (24.8%), Staphylococcus species (19.2%), Proteus mirabilis (13.6%), Pseudomonas aeruginosa (12.0%), and Enterococcus species (12.0%). Staphylococcus felis (8.8%) and Staphylococcus pseudintermedius (5.6%) were the predominant Staphylococcus species. Rare pathogens such as Corynebacterium urealyticum and Lactococcus garvieae were also identified. Antimicrobial testing revealed alarming resistance, with 69.2% of isolates exhibiting multidrug resistance (MDR). Escherichia coli and Proteus mirabilis showed high resistance to amoxicillin/clavulanic acid (AMC) (45.2-70.6%) and sulfamethoxazole/trimethoprim (SXT) (51.6-52.9%). Enterococcus faecium exhibited 85.7% resistance to AMC. Methicillin resistance was identified in 41.7% of Staphylococcus isolates, particularly high in Staphylococcus epidermidis (75.0%) and Staphylococcus pseudintermedius (71.4%). High fluoroquinolone resistance among MDR isolates further exacerbates AMR concerns. These results indicate that MDR Gram-negative, Staphylococcus, and Enterococcus species complicate the empirical treatment of feline UTIs, highlighting significant implications for AMR in veterinary practice.

Keywords: antimicrobial resistance; bacteria; cat; urinary tract infections.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Workflow illustrating the reception of clinical samples from the diagnostic hospital, followed by the research process of isolating and analyzing bacteria from leftover diagnostic materials.
Figure 2
Figure 2
Heatmap of Escherichia coli antimicrobial susceptibility profiles and calculated susceptibility/resistance percentages (n = 31). Each coded row corresponds to a single isolate, with red-colored labels specifically indicating isolates positive for ESBL screening. Abbreviations used are AMC, amoxicillin/clavulanic acid; AMP, ampicillin; SXT, sulfamethoxazole/trimethoprim; LEX, cephalexin; CEP, cephalothin; CPD, cefpodoxime; VEC, cefovecin; FUR, ceftiofur; ENR, enrofloxacin; MAR, marbofloxacin; PRA, pradofloxacin; DXT, doxycycline; TET, tetracycline; GEN, gentamicin; AMK, amikacin; NEO, neomycin; CMP, chloramphenicol; NIT, nitrofurantoin; IPM, imipenem.
Figure 3
Figure 3
Heatmap of Proteus mirabilis antimicrobial susceptibility profiles and calculated susceptibility/resistance percentages (n = 17). Each coded row corresponds to a single isolate. Abbreviations used are AMC, amoxicillin/clavulanic acid; AMP, ampicillin; SXT, sulfamethoxazole/trimethoprim; LEX, cephalexin; CEP, cephalotin; CPD, cepodoxime; VEC, cefovecin; FUR, ceftiofur; ENR, enrofloxacin; MAR, marbofloxacin; PRA, pradofloxacin; DXT, doxycycline; TET, tetracycline; GEN, gentamicin; AMK, amikacin; NEO, neomycin; CMP, chloramphenicol; IPM, imipenem.
Figure 4
Figure 4
Heatmap of Pseudomonas aeruginosa antimicrobial susceptibility profiles and calculated susceptibility/resistance percentages (n = 15). Each coded row corresponds to a single isolate. Abbreviations used are VEC, cefovecin; FUR, ceftiofur; ENR, enrofloxacin; MAR, marbofloxacin; GEN, gentamicin; AMK, amikacin; IPM, imipenem.
Figure 5
Figure 5
Heatmap of coagulase-negative Staphylococcus species antimicrobial susceptibility profiles and calculated susceptibility/resistance percentages (n = 15). Each coded row corresponds to a single isolate, with red-colored labels specifically indicating isolates positive for the mecA gene. Abbreviations used are OXA, oxacillin; AMC, amoxicillin/clavulanic acid; BEN, benzylpenicillin; SXT, sulfamethoxazole/trimethoprim; VEC, cefovecin; ENR, enrofloxacin; MAR, marbofloxacin; PRA, pradofloxacin; DXT, doxycycline; MIN, minocycline; CM, clindamycin; ERY, erythromycin; CMP, chloramphenicol; FFC, florfenicol; GEN, gentamicin; AMK, amikacin; NIT, nitrofurantoin.
Figure 6
Figure 6
Heatmap of coagulase-positive Staphylococcus species antimicrobial susceptibility profiles and calculated susceptibility/resistance percentages (n = 9). Each coded row corresponds to a single isolate, with red-colored labels specifically indicating isolates positive for the mecA gene. Abbreviations used are OXA, oxacillin; AMC, amoxicillin/clavulanic acid; BEN, benzylpenicillin; SXT, sulfamethoxazole/trimethoprim; VEC, cefovecin; ENR, enrofloxacin; MAR, marbofloxacin; PRA, pradofloxacin; DXT, doxycycline; MIN, minocycline; CM, clindamycin; ERY, erythromycin; CMP, chloramphenicol; FFC, florfenicol; GEN, gentamicin; AMK, amikacin; NIT, nitrofurantoin. * It was predicted as a coagulase-positive Staphylococcus based on hemolysis.
Figure 7
Figure 7
Heatmap of Enterococcus species antimicrobial susceptibility profiles and calculated susceptibility/resistance percentages (n = 13). Each coded row corresponds to a single isolate. BEN, benzylpenicillin; AMC, amoxicillin/clavulanic acid; VEC, cefovecin; ENR, enrofloxacin; MAR, marbofloxacin; DXT, doxycycline; MIN, minocycline; ERY, erythromycin; CMP, chloramphenicol; FFC, florfenicol; NIT, nitrofurantoin; VAN, vancomycin.

Similar articles

References

    1. Vopelius-Feldt C. Ph.D. Thesis. Ludwig-Maximilians-Universität; Munich, Germany: 2012. Bakterielle Harnwegsinfektionen bei der Katze: Eine Retrospektive Uber 10 Jahre.
    1. Wong C., Epstein S.E., Westropp J.L. Antimicrobial Susceptibility Patterns in Urinary Tract Infections in Dogs (2010–2013) J. Vet. Intern. Med. 2015;29:1045–1052. doi: 10.1111/jvim.13571. - DOI - PMC - PubMed
    1. Gerber B., Boretti F.S., Kley S., Laluha P., Müller C., Sieber N., Unterer S., Wenger M., Flückiger M., Glaus T., et al. Evaluation of clinical signs and causes of lower urinary tract disease in European cats. J. Small Anim. Pract. 2005;46:571–577. doi: 10.1111/j.1748-5827.2005.tb00288.x. - DOI - PubMed
    1. Kraijer M., Fink-Gremmels J., Nickel R.F. The short-term clinical efficacy of amitriptyline in the management of idiopathic feline lower urinary tract disease: A controlled clinical study. J. Feline Med. Surg. 2003;5:191–196. doi: 10.1016/S1098-612X(03)00004-4. - DOI - PMC - PubMed
    1. Dorsch R., Teichmann-Knorrn S., Sjetne Lund H. Urinary tract infection and subclinical bacteriuria in cats: A clinical update. J. Feline Med. Surg. 2019;21:1023–1038. doi: 10.1177/1098612X19880435. - DOI - PMC - PubMed

LinkOut - more resources