Visual Field Examinations for Retinal Diseases: A Narrative Review
- PMID: 40806887
- PMCID: PMC12346953
- DOI: 10.3390/jcm14155266
Visual Field Examinations for Retinal Diseases: A Narrative Review
Abstract
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal functional loss before structural changes become visible. This review summarizes how VF testing is applied across key conditions: hydroxychloroquine (HCQ) retinopathy, age-related macular degeneration (AMD), diabetic retinopathy (DR) and macular edema (DME), and inherited disorders including inherited dystrophies such as retinitis pigmentosa (RP). Traditional methods like the Goldmann kinetic perimetry and simple tools such as the Amsler grid help identify large or central VF defects. Automated perimetry (e.g., Humphrey Field Analyzer) provides detailed, quantitative data critical for detecting subtle paracentral scotomas in HCQ retinopathy and central vision loss in AMD. Frequency-doubling technology (FDT) reveals early neural deficits in DR before blood vessel changes appear. Microperimetry offers precise, localized sensitivity maps for macular diseases. Despite its value, VF testing faces challenges including patient fatigue, variability in responses, and interpretation of unreliable results. Recent advances in artificial intelligence, virtual reality perimetry, and home-based perimetry systems are improving test accuracy, accessibility, and patient engagement. Integrating VF exams with these emerging technologies promises more personalized care, earlier intervention, and better long-term outcomes for patients with retinal disease.
Keywords: progression; retinal disease; screening; visual fields.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
Similar articles
-
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.Cochrane Database Syst Rev. 2011 Jul 6;(7):CD008081. doi: 10.1002/14651858.CD008081.pub2. Cochrane Database Syst Rev. 2011. Update in: Cochrane Database Syst Rev. 2015 Jan 07;1:CD008081. doi: 10.1002/14651858.CD008081.pub3. PMID: 21735421 Updated.
-
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.Cochrane Database Syst Rev. 2015 Jan 7;1(1):CD008081. doi: 10.1002/14651858.CD008081.pub3. Cochrane Database Syst Rev. 2015. PMID: 25564068 Free PMC article.
-
Role of microperimetry to detect early visual function deficits in patients with hydroxychloroquine retinal toxicity-a review.Eye (Lond). 2025 Jul 9. doi: 10.1038/s41433-025-03888-x. Online ahead of print. Eye (Lond). 2025. PMID: 40634738 Review.
-
Prescription of Controlled Substances: Benefits and Risks.2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30726003 Free Books & Documents.
-
Artificial intelligence for diagnosing exudative age-related macular degeneration.Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2. Cochrane Database Syst Rev. 2024. PMID: 39417312
References
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources