Metabolic Master Switch: Pyruvate Carboxylase Fuels Antimicrobial Resistance and Virulence in Foodborne Staphylococcus aureus
- PMID: 40807502
- PMCID: PMC12346120
- DOI: 10.3390/foods14152566
Metabolic Master Switch: Pyruvate Carboxylase Fuels Antimicrobial Resistance and Virulence in Foodborne Staphylococcus aureus
Abstract
Staphylococcus aureus, a major cause of foodborne illness globally, presents significant challenges due to its multidrug resistance and biofilm-forming capabilities. Pyruvate carboxylase (PycA), a metabolic master switch linking glycolysis and the tricarboxylic acid (TCA) cycle, is a potential target for controlling S. aureus. In this study, a pycA mutant was constructed and analyzed using phenotypic assays and proteomics to investigate its role in virulence and antimicrobial resistance. The results showed that deletion of pycA in the foodborne methicillin-resistant strain ATCC BAA1717 resulted in a 4- to 1024-fold reduction in resistance to β-lactams, aminoglycosides, and macrolides; a 23.24% impairment in biofilm formation; and a 22.32% decrease in staphyloxanthin production, a key antioxidant essential for survival in oxidative food environments. Proteomic analysis revealed downregulation of the TCA cycle, purine biosynthesis, surface adhesins (FnbA/B, SasG), and β-lactamase (BlaZ), linking PycA-mediated metabolism to phenotypes relevant to food safety. These findings underscore the importance of PycA as a metabolic regulator crucial for S. aureus resilience in food systems, suggesting novel strategies to combat foodborne staphylococcal infections through metabolic interference.
Keywords: Staphylococcus aureus; TCA cycle; antimicrobial resistance; biofilm; purine metabolism; pyruvate carboxylase.
Conflict of interest statement
The authors declare no financial, personal, or professional interests that could influence the content or evaluation of this manuscript.
Figures




Similar articles
-
gltB encoding glutamate synthase is involved in persister and biofilm formation and virulence in Staphylococcus aureus.Microbiol Spectr. 2025 Aug 12:e0051125. doi: 10.1128/spectrum.00511-25. Online ahead of print. Microbiol Spectr. 2025. PMID: 40793764
-
Bacteriophage infection drives loss of β-lactam resistance in methicillin-resistant Staphylococcus aureus.Elife. 2025 Jul 10;13:RP102743. doi: 10.7554/eLife.102743. Elife. 2025. PMID: 40637714 Free PMC article.
-
CRISPR/Cas9-targeted smpB mutation revealing roles in biofilm formation, motility, and antibiotic susceptibility in Acinetobacter baumannii.PLoS One. 2025 Aug 4;20(8):e0329638. doi: 10.1371/journal.pone.0329638. eCollection 2025. PLoS One. 2025. PMID: 40758696 Free PMC article.
-
Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances.Cell Commun Signal. 2024 Mar 22;22(1):188. doi: 10.1186/s12964-024-01511-2. Cell Commun Signal. 2024. PMID: 38519959 Free PMC article. Review.
-
Applications of Lab on a Chip in Antimicrobial Susceptibility of Staphylococcus aureus: A Systematic Review.Medicina (Kaunas). 2023 Sep 26;59(10):1719. doi: 10.3390/medicina59101719. Medicina (Kaunas). 2023. PMID: 37893437 Free PMC article.
References
-
- Sivakumar M., Dubal Z.B., Kumar A., Bhilegaonkar K., Vinodh Kumar O.R., Kumar S., Kadwalia A., Shagufta B., Grace M.R., Ramees T.P., et al. Virulent methicillin resistant Staphylococcus aureus (MRSA) in street vended foods. J. Food Sci. Technol. 2019;56:1116–1126. doi: 10.1007/s13197-019-03572-5. - DOI - PMC - PubMed
-
- Noskin G.A., Rubin R.J., Schentag J.J., Kluytmans J., Hedblom E.C., Smulders M., Lapetina E., Gemmen E. The Burden of Staphylococcus aureus Infections on Hospitals in the United States: An Analysis of the 2000 and 2001 Nationwide Inpatient Sample Database. Arch. Intern. Med. 2005;165:1756–1761. doi: 10.1001/archinte.165.15.1756. - DOI - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources