Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 14:e0047825.
doi: 10.1128/jvi.00478-25. Online ahead of print.

An African swine fever virus-specific antibody reactome reveals antigens as potential candidates for vaccine development

Affiliations

An African swine fever virus-specific antibody reactome reveals antigens as potential candidates for vaccine development

Songxin Guo et al. J Virol. .

Abstract

Developing an efficient and safe vaccine for African swine fever (ASF), a devastating disease of pigs, remains a significant challenge mainly due to limited knowledge of the immune correlates of protection. Identifying protective determinants is difficult because ASF virus (ASFV) is a large and complex DNA virus encoding over 160 proteins. Here, we constructed an ASFV proteome microarray containing 160 full-length proteins for profiling ASFV-specific antibodies. An antibody reactome containing 46 ASFV proteins (including 12 newly recognized B-cell antigens) was established by analyzing several cohorts of serum samples from pigs protected with different live-attenuated vaccines (LAVs). A proteome-wide study of antibody dynamics over a 26-day period provided a multi-dimensional landscape of the host humoral response against ASFV after acute infection, LAV immunization, and post-vaccination challenge. This study provides a comprehensive understanding of ASFV-induced humoral immune responses, highlights B-cell antigen candidates for vaccine design, supports the investigation of LAV protection mechanisms, and would accelerate vaccine development.IMPORTANCEAfrican swine fever (ASF) poses a severe threat to global swine industries, with vaccine development hindered by limited understanding of immune protection. A comprehensive understanding of antibody responses against ASF virus (ASFV) and the discovery of protective antigens are fundamental to vaccine development. This study constructed an ASFV proteome microarray to profile antibody responses against 160 viral proteins and established the antibody spectra against ASFV with dynamic features. The proteome microarray offers a high-throughput platform for understanding ASFV immunology and pathogenicity and will contribute to ASF vaccine development and diagnosis.

Keywords: African swine fever virus; B-cell antigens; humoral immunity; live-attenuated vaccines; proteome microarray.

PubMed Disclaimer

Similar articles

LinkOut - more resources