Eliminating Mobility-Thickness Dependence in Transparent Conductive Oxide Layer Growth: A Critical Nucleation Strategy
- PMID: 40810625
- DOI: 10.1002/adma.202507648
Eliminating Mobility-Thickness Dependence in Transparent Conductive Oxide Layer Growth: A Critical Nucleation Strategy
Abstract
Carrier mobility is a key parameter for transparent conductive oxide (TCO) layers. However, it shows significant thickness-dependent deterioration in the reports so far, making it challenging to obtain high-quality ultrathin TCO films. Here, a critical nucleation strategy (cns) is proposed, i.e., manipulating nucleation status that matches the intended film thickness, to break the spell. 30, 20, and 10 nm-thick cerium-doped indium oxide (ICO) films are successfully fabricated with electron mobility values of 127, 119, and 108 cm2 V-1 s-1, respectively, which exceed twice that of the films with equal thickness obtained from the conventional solid-phase crystallization approach. A novel film growth mode for fabricating a TCO layer with mobility independent of film thickness is proposed. It is claimed that an appropriate weakly-crystallized as-deposited film is a prerequisite for obtaining favorable crystallites with largely suppressed scattering from grain boundaries, ionized impurities, and film surface. Further, by implementing our 10 nm-thick ICO film into silicon heterojunction architecture, a device efficiency of 25.16% is demonstrated, which is comparable to the reference cell using a 102 nm-thick ICO film. This manifests a 90% indium reduction, indicating significant potential for future optoelectronic applications, particularly for the terawatt-scale photovoltaic industry expansion.
Keywords: cerium‐doped indium oxide (ICO); high mobility; reactive plasma deposition (RPD); ultrathin transparent conductive oxide (TCO).
© 2025 Wiley‐VCH GmbH.
Similar articles
-
Prescription of Controlled Substances: Benefits and Risks.2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30726003 Free Books & Documents.
-
Management of urinary stones by experts in stone disease (ESD 2025).Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085. Epub 2025 Jun 30. Arch Ital Urol Androl. 2025. PMID: 40583613 Review.
-
Tungsten-Doped Indium Tin Oxide Thin-Film Transistors for Dual-mode Proximity Sensing Application.ACS Appl Mater Interfaces. 2023 Nov 15;15(45):52754-52766. doi: 10.1021/acsami.3c11393. Epub 2023 Nov 7. ACS Appl Mater Interfaces. 2023. PMID: 37933535
-
Electrophoresis.2025 Jul 14. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jul 14. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 36251838 Free Books & Documents.
-
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD015048. doi: 10.1002/14651858.CD015048.pub2. Cochrane Database Syst Rev. 2022. PMID: 36161421 Free PMC article.
References
-
- M. Morales‐Masis, S. De Wolf, R. Woods‐Robinson, J. W. Ager, C. Ballif, Adv. Electron. Mater. 2017, 3, 1600529.
-
- T. Koida, Y. Ueno, H. Shibata, Phys. Status Solidi A 2018, 215, 1700506.
-
- E. Aydin, M. De Bastiani, X. Yang, M. Sajjad, F. Aljamaan, Y. Smirnov, M. N. Hedhili, W. Liu, T. G. Allen, L. Xu, E. Van Kerschaver, M. Morales‐Masis, U. Schwingenschlögl, S. De Wolf, Adv. Funct. Mater. 2019, 29, 1901741.
-
- E. Aydin, E. Ugur, B. K. Yildirim, T. G. Allen, P. Dally, A. Razzaq, F. Cao, L. Xu, B. Vishal, A. Yazmaciyan, A. A. Said, S. Zhumagali, R. Azmi, M. Babics, A. Fell, C. Xiao, S. De Wolf, Nature 2023, 623, 732.
-
- T. Qiu, E. M. Akinoglu, B. Luo, M. Konarova, J. Yun, I. R. Gentle, L. Wang, Adv. Mater. 2022, 34, 2103842.
Grants and funding
LinkOut - more resources
Full Text Sources