Zirconium-Rich Strategy in Ultrathin Hf0.5Zr0.5O2 toward Back-End-of-Line-Compatible Ferroelectric Random Access Memory
- PMID: 40810730
- DOI: 10.1002/advs.202509384
Zirconium-Rich Strategy in Ultrathin Hf0.5Zr0.5O2 toward Back-End-of-Line-Compatible Ferroelectric Random Access Memory
Abstract
HfO2-based ferroelectric devices have garnered lots of attention in embedded memory due to its exceptional complementary metal oxide semiconductor (CMOS) compatibility as well as sub-10 nm scalability. Nevertheless, challenges such as double remanent polarization (2Pr) degradation and thermal budget issues while scaling the Hf0.5Zr0.5O2 (HZO) thickness have limited its integration in high-intensity memory and high-speed computing. Here, an effective strategy involving the zirconium-rich layer (Zr-RL) is developed to address this dilemma. Remarkably low operating voltage of 1.0 V, alongside exceptional ferroelectricity with 2Pr of 43.4 µC cm-2 and a coercive voltage of 0.75 V are achieved in the ferroelectric capacitor with sub-6 nm HZO/Zr-RL/HZO stack. First-principles calculations reveal that the incorporation of Zr-RL induces a 0.76% tensile strain, which effectively reduces the growth barrier and surface energy of the ferroelectric phase, thereby facilitating the crystallization of the HZO/Zr-RL/HZO stack under a low thermal budget. Moreover, robust reliability, including a high breakdown voltage of 3.69 V, superior endurance characteristics exceeding 1011 cycles, and excellent retention time of 10 years are demonstrated in the ferroelectric capacitor with HZO/Zr-RL/HZO stack. Our investigations provide new insights into building a low-voltage operation, high ferroelectricity and reliability, long data retention, and back-end-of-line-compatible ferroelectric random access memory in scaled CMOS technology nodes.
Keywords: back‐end‐of‐line; ferroelectricity; reliability; tensile strain; zirconium‐rich layer.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
References
-
- Y. Li, Y. Xiong, X. Zhang, L. Yin, Y. Yu, H. Wang, L. Liao, J. He, Nat. Electron. 2024, 8, 36.
-
- G. Wu, X. Zhang, G. Feng, J. Wang, K. Zhou, J. Zeng, D. Dong, F. Zhu, C. Yang, X. Zhao, D. Gong, M. Zhang, B. Tian, C. Duan, Q. Liu, J. Wang, J. Chu, M. Liu, Nat. Mater. 2023, 22, 1499.
-
- Y. C. Liu, Y. C. Li, Z. Y. Gu, X. L. Zhou, T. Huang, Z. H. Li, T. T. Pi, Y. F. Li, S. J. Ding, L. Chen, H. L. Lu, W. J. Liu, IEEE Electron Device Lett. 2023, 44, 1116.
-
- G. Feng, Q. Zhu, X. Liu, L. Chen, X. Zhao, J. Liu, S. Xiong, K. Shan, Z. Yang, Q. Bao, F. Yue, H. Peng, R. Huang, X. Tang, J. Jiang, W. Tang, X. Guo, J. Wang, A. Jiang, B. Dkhil, B. Tian, J. Chu, C. Duan, Nat. Commun. 2024, 15, 513.
-
- K. Toprasertpong, K. Tahara, Y. Hikosaka, K. Nakamura, H. Saito, M. Takenaka, S. Takagi, ACS Appl. Mater. Interfaces 2022, 14, 51137.