Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025:33:3271-3280.
doi: 10.1109/TNSRE.2025.3598795.

Blind Source Separation of Event-Related Potentials Using Recurrent Neural Network

Blind Source Separation of Event-Related Potentials Using Recurrent Neural Network

Jamie A O'Reilly et al. IEEE Trans Neural Syst Rehabil Eng. 2025.

Abstract

Event-related potentials (ERPs) are a superposition of electric potential differences generated by neurophysiological activity associated with psychophysiological events. Spatiotemporal dissociation of underlying signal sources can supplement conventional ERP analysis and improve source localization. However, sources separated by independent component analysis (ICA) can be challenging to interpret because of redundant or illusory components and indeterminant polarity and scale. Hence, we have developed a recurrent neural network (RNN) method for blind source separation. The RNN transforms input step pulse signals representing events into corresponding ERP difference waveforms. Source waveforms are obtained from penultimate layer units and scalp maps are obtained from feed-forward output layer weights that project these source waveforms onto EEG electrode amplitudes. An interpretable, sparse source representation is achieved by incorporating L1 regularization of signals obtained from the penultimate layer of the network during training. This RNN method was applied to four ERP difference waveforms (MMN, N170, N400, P3) from the open-access ERP CORE database, and ICA was applied to the same data for comparison. The RNN decomposed real ERPs into eleven spatially and temporally separate sources that were less noisy, tended to be more ERP-specific, and were less similar to each other than ICA-derived sources. The RNN sources also had less ambiguity between source waveform amplitude, scalp potential polarity, and equivalent current dipole orientation than ICA sources. In conclusion, the proposed RNN blind source separation method can be effectively applied to average ERP waves and holds promise for further development as a computational model of event-related neural signals.

PubMed Disclaimer

Update of

Similar articles

LinkOut - more resources