Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 16.
doi: 10.1038/s41417-025-00953-1. Online ahead of print.

BCL-xL dependency in chromophobe renal cell carcinoma

Affiliations

BCL-xL dependency in chromophobe renal cell carcinoma

Nadine Mahmoud et al. Cancer Gene Ther. .

Abstract

Chromophobe renal cell carcinoma (ChRCC) is the third most common subtype of kidney cancer, with limited therapeutic options. Using BH3 profiling to screen ChRCC-derived cell lines, we discovered that BH3 peptides targeting BCL-xL promote apoptosis in ChRCC. Downregulation of BCL2L1 is sufficient to induce apoptosis in ChRCC-derived cells, consistent with our screening results. BCL2L1, encoding BCL-xL, is fourfold upregulated in ChRCC compared to normal kidney and has the second highest expression in The Cancer Genome Atlas. BCL2L1 downregulation enhances MCL-1 expression, suggesting a possible compensatory role for MCL-1. Based on these results, we evaluated two BH3 mimetics, A-1331852 (targeting BCL-xL) and S63845 (targeting MCL-1). Their combination resulted in 80% cell death. DT2216, a proteolysis-targeting chimera (PROTAC) that targets BCL-xL for degradation, induced cleaved PARP and caspase 3, indicators of apoptosis. ChRCC cells are known to be highly sensitive to ferroptosis. We combined A-1331852 and S63845 with IKE or RSL3 (ferroptosis-inducing drugs). BCL-xL and MCL-1 inhibition enhanced the susceptibility to ferroptosis, suggesting a link between apoptosis and ferroptosis in ChRCC. These data indicate that BCL-xL maintains ChRCC cell survival by suppressing apoptosis. The BCL-xL-specific PROTAC DT2216, currently in clinical trials, may provide an opportunity for ChRCC therapy.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests. Ethics approval and consent to participate: All methods were performed in accordance with relevant guidelines and regulations. This in vitro study did not involve human participants, animals, or identifiable human images. Therefore, ethical approval from an ethics committee and informed consent were not required.

References

    1. Henske EP, Cheng L, Hakimi AA, Choueiri TK, Braun DA. Chromophobe renal cell carcinoma. Cancer Cell. 2023;41:1383–8. - PubMed
    1. Msaouel P, Genovese G, Tannir NM. Renal cell carcinoma of variant histology: biology and therapies. Hematol Oncol Clin North Am. 2023;37:977–92. - PubMed - PMC
    1. Roldan-Romero JM, Santos M, Lanillos J, Caleiras E, Anguera G, Maroto P, et al. Molecular characterization of chromophobe renal cell carcinoma reveals mTOR pathway alterations in patients with poor outcome. Mod Pathol. 2020;33:2580–90. - PubMed
    1. Lindgren D, Eriksson P, Krawczyk K, Nilsson H, Hansson J, Veerla S, et al. Cell-type-specific gene programs of the normal human nephron define kidney cancer subtypes. Cell Rep. 2017;20:1476–89. - PubMed
    1. Voss MH, Bastos DA, Karlo CA, Ajeti A, Hakimi AA, Feldman DR, et al. Treatment outcome with mTOR inhibitors for metastatic renal cell carcinoma with nonclear and sarcomatoid histologies. Ann Oncol. 2014;25:663–8. - PubMed - PMC

LinkOut - more resources