Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 16;353(Pt B):120408.
doi: 10.1016/j.jep.2025.120408. Online ahead of print.

Gut microbiota modified by Mulberry leaf water extract improves T2DM through browning of WAT/BAT activation mediated by SCFAs-AMPK/SIRT1/PGC-1α signaling pathway

Affiliations

Gut microbiota modified by Mulberry leaf water extract improves T2DM through browning of WAT/BAT activation mediated by SCFAs-AMPK/SIRT1/PGC-1α signaling pathway

Yuhang Du et al. J Ethnopharmacol. .

Abstract

Ethnopharmacological relevance: Mulberry leaf (Morus alba L.), traditionally recorded in "Compendium of Materia Medica" for diabetes treatment. Mulberry leaf water extract (MLE) has also been shown in modern studies to improve blood glucose levels while restoring gut microbiota homeostasis and increasing short-chain fatty acids (SCFAs) levels. However, the causal relationship between MLE-promoted SCFAs elevation and improvements in glucose/lipid metabolism as well as the exact mechanism, remain unclear.

Aim of the study: This study aimed to clarify the causal relationship between MLE-promoted SCFAs elevation and improvements in glucose/lipid metabolism as well as the exact mechanism.

Materials and methods: db/db mice received antibiotic-induced microbiota depletion to generate pseudo-germ-free model, followed by parallel interventions: fecal microbiota transplantation (FMT) from MLE (4 g crude drug/kg)-treated or untreated donors, and direct SCFAs supplementation. Glucose and lipid metabolism in brown adipose tissue (BAT) and inguinal white adipose tissue (IWAT), and hepatic steatosis/inflammation were evaluated through biochemical assays, qRT-PCR and histology. Protein expressions in adipose tissues were assessed by Western blotting and immunohistochemistry. Gut microbiota composition was analyzed by 16S rRNA sequencing and fecal SCFAs levels were detected by targeted metabolomics.

Results: Both FMT-MLE and SCFAs treatments demonstrated marked metabolic benefits, including enhanced glucose/lipid homeostasis, improved lipid metabolism, alleviated hepatic steatosis and inflammation, restored microbial balance, and elevated SCFAs concentrations. Mechanistically, mice treated with FMT-MLE and SCFAs showed increased BAT activity and exhibited increased energy expenditure, and browning of WAT. Additionally, FMT-MLE and SCFAs upregulated the protein expression of phosphorylated-AMP-activated protein kinase (p-AMPK), p-AMPK/adenosine monophosphate-activated protein kinase (AMPK), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) in BAT and IWAT.

Conclusion: MLE-modulated gut microbiota ameliorates T2DM via SCFAs-activated AMPK/SIRT1/PGC-1α signaling , promoting WAT browning and BAT activation.

Keywords: Brown adipose tissue activation; Gut microbiota; Mulberry leaf extract; SCFAs-AMPK/SIRT1/PGC-1α; Type 2 diabetes mellitus; White adipose tissue browning.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources