Development of a functional assay for the characterisation of SMAD4 variants from the French haemorrhagic hereditary telangiectasia cohort
- PMID: 40835297
- DOI: 10.1136/jmg-2025-110797
Development of a functional assay for the characterisation of SMAD4 variants from the French haemorrhagic hereditary telangiectasia cohort
Abstract
Background: Hereditary haemorrhagic telangiectasia (HHT) and juvenile polyposis syndrome (JPS) can be caused by SMAD4 pathogenic variants. SMAD4 is a common transcription factor of the BMP/TGFβ signalling pathway. In this study, we developed a cell-based functional assay to address the pathogenicity of SMAD4 variants identified in the French HHT cohort.
Methods: SMAD4 variants were generated by site-directed mutagenesis. A functional assay was developed in a cell line that does not express SMAD4, and the different SMAD4 variants were tested for their capacity to activate the BMP and TGFβ response using luciferase reporter assays.
Results: Twelve SMAD4 variants were identified and studied. We were able to develop a robust functional assay for these variants. All the expressed variants resulted in loss of function (LOF) in response to BMP9 or TGFβ1 stimulation. SMAD4 variants within the MH2 domain expressed SMAD4 mutated proteins that were unable to hetero-oligomerise with other SMADs, which could explain their LOF. Finally, we tested primary human endothelial cells isolated from patients with HHT carrying SMAD4 heterozygous pathogenic variants and observed that they behaved like the control cells at rest or when stimulated with BMP9.
Conclusion: We developed a SMAD4 functional assay that allows discrimination between benign and pathogenic SMAD4 variants. We demonstrated that the underlying molecular mechanism of this pathogenicity is due mostly to a loss of hetero-oligomerisation. This assay will be transferable to clinical genetic laboratories and will improve the diagnosis of patients with HHT-JPS.
Keywords: Cardiovascular Diseases; Genetic Diseases, Inborn; Human Genetics; Methods; Mutation.
© Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.
Conflict of interest statement
Competing interests: None declared.
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
Miscellaneous