Discovery of a widespread chemical signalling pathway in the Bacteroidota
- PMID: 40836091
- DOI: 10.1038/s41586-025-09418-9
Discovery of a widespread chemical signalling pathway in the Bacteroidota
Abstract
Considerable advances have been made in characterizing bioactive molecules secreted by bacteria, yet the regulatory elements controlling their production remain largely understudied. Here we identify and characterize the N-acyl-cyclolysine (ACL) system-a cell-density-dependent chemical signalling system specific to and widespread in the phylum Bacteroidota (formerly Bacteroidetes)-and show that it regulates the expression of co-localized operons encoding diverse secreted molecules. Using genetic and biochemical analyses, combined with structural studies of a key biosynthetic enzyme, AclA, we elucidate the molecular structure of various ACLs and their complete biosynthetic pathway involving L-lysine acylation and ATP-dependent cyclization. Furthermore, we find that secreted ACLs are sensed by a dedicated transcription factor, AclR, resulting in the expression of associated operons and the autoinduction of ACL biosynthesis. Moreover, we show that different Bacteroidota strains produce structurally diverse ACLs and encode transcription factors with varying ligand specificities. Finally, we find that the acl circuit is widely distributed and transcribed in human gut and oral microbiome samples, with clear evidence for an active role in regulating associated operons under host colonization conditions. Understanding the function of the ACL system in different contexts has the potential to reveal details about the biology, ecology and chemistry of the Bacteroidota and how members of this phylum interact with their environments and hosts.
© 2025. The Author(s), under exclusive licence to Springer Nature Limited.
Conflict of interest statement
Competing interests: M.S.D. is a scientific co-founder and chief scientific officer at Pragma Bio. There is no overlap between the work described here and that performed at Pragma Bio. The other authors declare no competing interests.
Similar articles
-
Prescription of Controlled Substances: Benefits and Risks.2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30726003 Free Books & Documents.
-
"In a State of Flow": A Qualitative Examination of Autistic Adults' Phenomenological Experiences of Task Immersion.Autism Adulthood. 2024 Sep 16;6(3):362-373. doi: 10.1089/aut.2023.0032. eCollection 2024 Sep. Autism Adulthood. 2024. PMID: 39371355
-
How lived experiences of illness trajectories, burdens of treatment, and social inequalities shape service user and caregiver participation in health and social care: a theory-informed qualitative evidence synthesis.Health Soc Care Deliv Res. 2025 Jun;13(24):1-120. doi: 10.3310/HGTQ8159. Health Soc Care Deliv Res. 2025. PMID: 40548558
-
Short-Term Memory Impairment.2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
References
-
- Buchan, A., LeCleir, G. R., Gulvik, C. A. & Gonzalez, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014). - PubMed
-
- Brinkmann, S., Spohn, M. S. & Schaberle, T. F. Bioactive natural products from Bacteroidetes. Nat. Prod. Rep. 39, 1045–1065 (2022). - PubMed
-
- Desai, M. S. & Brune, A. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 6, 1302–1313 (2012). - PubMed
LinkOut - more resources
Full Text Sources
Molecular Biology Databases