Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Nov 15;232(1):161-8.
doi: 10.1042/bj2320161.

Structure and interactions of proteoglycans in the extracellular matrix produced by cultured human fibroblasts

Structure and interactions of proteoglycans in the extracellular matrix produced by cultured human fibroblasts

S Johansson et al. Biochem J. .

Abstract

Subconfluent cultures of human embryonic skin fibroblasts were labelled with [35S]sulphate for 3 days, after which cell-free extracellular matrix was isolated. A chondroitin sulphate proteoglycan (CSPG) and a heparan sulphate proteoglycan (HSPG) were purified from the matrix. Chromatography on Sepharose CL-2B gave peak Kav. values of 0.35 and 0.38 respectively for the CSPG and the HSPG. The polysaccharide chains released from the two PGs were of similar size (Kav. 0.50 on Sepharose CL-4B). Approx. 50% of the CSPG showed affinity for hyaluronic acid (HA). However, it differed immunologically from the HA-aggregating CSPG of human articular cartilage, and had a larger core protein (apparent molecular mass 290 kDa) than had the cartilage PG. Neither metabolically [35S]sulphate-labelled PGs, isolated from the medium of fibroblast cultures, nor chemically 3H-labelled polysaccharides (HA, CS, HS and heparin) were incorporated into the extracellular matrix when added to unlabelled cell cultures. These results indicate that the matrix PGs are not derived from the PGs present in the medium and that an interation between polysaccharide chains and matrix components is not sufficient for incorporation of PGs into the matrix. Incubation of cell-free 35S-labelled matrix with unlabelled polysaccharides did not lead to the release of any 35S-labelled material, supporting this conclusion. Furthermore, so-called 'link proteins' were not present in the fibroblast cultures, indicating that the CSPGs were anchored in the matrix in a manner different from the link-stabilized association of CSPG with HA in chondrocyte matrix. The identification of a proteinase, secreted by fibroblasts in culture, that after activation with heparin has the ability to release 35S-labelled PGs from the matrix may also indicate that the core proteins are important for the association of the PGs to the matrix.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1977 Sep 25;252(18):6470-7 - PubMed
    1. Biochem J. 1977 Dec 1;167(3):711-6 - PubMed
    1. J Cell Biol. 1978 Mar;76(3):748-60 - PubMed
    1. Biochem Biophys Res Commun. 1978 Oct 30;84(4):914-21 - PubMed
    1. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4944-8 - PubMed

Publication types