The interconversion of diacylglycerol and phosphatidylcholine during triacylglycerol production in microsomal preparations of developing cotyledons of safflower (Carthamus tinctorius L.)
- PMID: 4084230
- PMCID: PMC1152861
- DOI: 10.1042/bj2320217
The interconversion of diacylglycerol and phosphatidylcholine during triacylglycerol production in microsomal preparations of developing cotyledons of safflower (Carthamus tinctorius L.)
Abstract
Microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius) catalyse the acylation of sn-glycerol 3-phosphate in the presence of acyl-CoA. Under these conditions the radioactive glycerol in sn-glycerol 3-phosphate accumulates in phosphatidic acid, phosphatidylcholine, diacyl- and tri-acylglycerol. The incorporation of glycerol into phosphatidylcholine is via diacylglycerol and probably involves a cholinephosphotransferase. The results show that the glycerol moiety and the acyl components in phosphatidylcholine exchange with the diacylglycerol during the biosynthesis of diacylglycerol from phosphatidic acid. The continuous reversible transfer of diacylglycerol with phosphatidylcholine, which operates during active triacylglycerol synthesis, will control in part the polyunsaturated-fatty-acid quality of the final seed oil.
Similar articles
-
The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius L.) seed.Biochem J. 1985 Sep 1;230(2):379-88. doi: 10.1042/bj2300379. Biochem J. 1985. PMID: 4052051 Free PMC article.
-
The biosynthesis of triacylglycerols in microsomal preparations of developing cotyledons of sunflower (Helianthus annuus L.).Biochem J. 1984 Jun 1;220(2):481-8. doi: 10.1042/bj2200481. Biochem J. 1984. PMID: 6743281 Free PMC article.
-
Labelling of glycerolipids in the cotyledons of developing oilseeds by [1-14C] acetate and [2-3H] glycerol.Biochem J. 1978 Feb 15;170(2):421-33. doi: 10.1042/bj1700421. Biochem J. 1978. PMID: 580379 Free PMC article.
-
Receptor regulation of choline phospholipid hydrolysis. A novel source of diacylglycerol and phosphatidic acid.Biochem Pharmacol. 1989 May 15;38(10):1543-9. doi: 10.1016/0006-2952(89)90299-2. Biochem Pharmacol. 1989. PMID: 2543416 Review. No abstract available.
-
Triacylglycerol biosynthesis in yeast.Appl Microbiol Biotechnol. 2003 May;61(4):289-99. doi: 10.1007/s00253-002-1212-4. Epub 2003 Jan 29. Appl Microbiol Biotechnol. 2003. PMID: 12743757 Review.
Cited by
-
The utilisation of fatty-acid substrates in triacylglycerol biosynthesis by tissue-slices of developing safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) cotyledons.Planta. 1988 Mar;173(3):309-16. doi: 10.1007/BF00401017. Planta. 1988. PMID: 24226537
-
Acyltransferases Regulate Oil Quality in Camelina sativa Through Both Acyl Donor and Acyl Acceptor Specificities.Front Plant Sci. 2020 Aug 14;11:1144. doi: 10.3389/fpls.2020.01144. eCollection 2020. Front Plant Sci. 2020. PMID: 32922411 Free PMC article.
-
Safflower microsomes catalyse oil accumulation in vitro: A model system.Planta. 1986 Mar;169(1):33-7. doi: 10.1007/BF01369772. Planta. 1986. PMID: 24232426
-
Possible Role of Different Yeast and Plant Lysophospholipid:Acyl-CoA Acyltransferases (LPLATs) in Acyl Remodelling of Phospholipids.Lipids. 2016 Jan;51(1):15-23. doi: 10.1007/s11745-015-4102-0. Epub 2015 Dec 7. Lipids. 2016. PMID: 26643989 Free PMC article.
-
Kinetic complexities of triacylglycerol accumulation in developing embryos from Camelina sativa provide evidence for multiple biosynthetic systems.J Biol Chem. 2022 Jan;298(1):101396. doi: 10.1016/j.jbc.2021.101396. Epub 2021 Nov 12. J Biol Chem. 2022. PMID: 34774796 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources