Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 20;15(8):e71792.
doi: 10.1002/ece3.71792. eCollection 2025 Aug.

Chromosomal Inversion Associated With Diet Differences in Common Quails Sharing Wintering Grounds

Affiliations

Chromosomal Inversion Associated With Diet Differences in Common Quails Sharing Wintering Grounds

Celia Vinagre-Izquierdo et al. Ecol Evol. .

Abstract

Chromosomal inversions can contribute to genetic differentiation and ecological adaptation. In common quails (Coturnix coturnix), a large chromosomal inversion encompassing over 1200 genes is associated with key phenotypic traits, including increased body size, darker throat pigmentation, and reduced flight efficiency, which may influence migratory behavior. We hypothesized that the presence of resident common quails in the south of the Iberian Peninsula is the consequence of the high frequency of this chromosomal inversion, found in a high proportion of the breeding individuals in the region. We surveyed one wintering population in southern Spain and analyzed the genomic composition, morphology, and deuterium, nitrogen, and carbon stable isotope composition of primary feathers. Our results revealed the coexistence of birds with different karyotypes and morphologies that also differed in migratory behavior, as inferred from the comparison of the stable isotope signature in feathers. While quails with the inversion showed limited evidence of migratory movements, quails without the inversion seemed to have reached the area from other latitudes. Interestingly, our results also revealed that these migratory quails that reached this population in winter had differences in their diet. Thus, two separately evolving chromosomal lineages, characterized by the presence/absence of the inversion, coexist in the wintering area, leading to differences in morphology, behavior, and resource use. Due to the lack of recombination in the inversion, the divergence is expected to continue increasing.

Las inversiones cromosómicas pueden contribuir a la diferenciación genética y a la adaptación ecológica. En las codornices comunes (Coturnix coturnix), una gran inversión cromosómica que abarca más de 1.200 genes está asociada a rasgos fenotípicos clave, como un mayor tamaño corporal, una pigmentación más oscura en la garganta y una menor eficiencia de vuelo, lo que podría influir en el comportamiento migratorio. Nuestra hipótesis es que la presencia de codornices comunes residentes en el sur de la Península Ibérica es consecuencia de la alta frecuencia de esta inversión cromosómica, presente en una elevada proporción de los individuos reproductores de la región. Estudiamos una población invernante en el sur de España y analizamos la composición genómica, la morfología y la composición de isótopos estables de deuterio, nitrógeno y carbono en las plumas primarias. Nuestros resultados revelaron la coexistencia de aves con distintos cariotipos y morfologías, que además diferían en su comportamiento migratorio, según se pudo inferir a partir de la comparación de la firma isotópica estable en las plumas. Mientras que las codornices con la inversión mostraron escasas evidencias de movimientos migratorios, las codornices sin la inversión parecían haber llegado a la zona desde otras latitudes. Nuestros resultados también mostraron que estas codornices migratorias que alcanzaron esta población en invierno presentaban diferencias en su dieta. Así, dos linajes cromosómicos que evolucionan de forma separada, caracterizados por la presencia o ausencia de la inversión, coexisten en la zona de invernada, lo que da lugar a diferencias en la morfología, el comportamiento y el uso de los recursos. Debido a la ausencia de recombinación en la región invertida, se espera que la divergencia continúe aumentando.

Keywords: chromosomal inversion; diet; genotyping by sequencing; migration; stable isotopes.

PubMed Disclaimer

Conflict of interest statement

Benefit‐sharing statement: Benefits from this research stem from the sharing of our data and results on publicly accessible databases.The authors declare no conflicts of interest.

Figures

FIGURE 1
FIGURE 1
Study area, habitat, and principal component analysis (PCA) of genetic variation in common quails. (A) Location of the study area within the Iberian Peninsula. Colored areas correspond to breeding (orange), resident (green) and wintering areas (purple) for the common quail, according to BirdLife International (2018). Breeding grounds extend to the north reaching Scandinavia and most of the wintering grounds are located in the Sahel, south of the Sahara desert. The study site is within the range where resident quails are expected and it is crossed by migratory quails. (B) Male common quails captured in the same location with (individual with the dark throat) and without the inversion; grasslands in the study area. (C) PCA using the complete set of SNPs (25,416). In red, Japanese quail samples; green, game farm admixed quails (common × Japanese quail); black, wintering quails captured for this study. Yellow, pink and blue mark reference individuals genotyped in a previous study (Sanchez‐Donoso et al. 2022), carrying different inversion karyotypes (inversion haplotype: B; karyotypes: AA, AB and BB) (D) PCA using 3705 SNPs located within the inversion in chromosome 1 and classifying individuals based on their karyotype. (E) PCA using the entire SNP dataset after excluding those in the inverted region and removing one individual identified as first order relative of another one.
FIGURE 2
FIGURE 2
Stable isotopes in two primary feathers from 32 quails captured during winter in one location in southern Spain. One of the feathers was grown during the breeding season when the individual was born (b), the other one was grown during the wintering season when it was captured and sampled (w). Panels (A–C) represent the isotopic values for deuterium (δ2H), carbon (δ13C) and nitrogen (δ15N) for the three karyotypes (AA, AB, BB). Braces mark significant differences (Appendix A; ***p < 0.001; *p < 0.05). Panel (D) represents carbon (δ13C) versus deuterium (δ2H), linking the feather grown during the breeding season (squares) with the one grown during the wintering season (circles) from the same individual. Wintering feathers of AA quails show similar δ2H values to those for AB and BB quails (which suggests that they were formed at similar latitudes) but different δ13C values. That suggests AA quails have a different diet during the wintering season while they remain at similar latitudes than the rest of the quails.
FIGURE 3
FIGURE 3
Phenotypic variation by karyotype. PCA of phenotypic data for common quails, colored according to karyotype group (AA: Yellow, AB: Pink and BB: Blue). Arrows point in the direction of the variables and are colored to reflect statistically significant differences between karyotypes: Orange represents variables significantly different across all three karyotypes (AA, AB, and BB); green indicates variables where AA differs significantly from AB and BB; and purple indicates variables with significant differences only between AA and BB.

References

    1. Alexander, D. H. , Novembre J., and Lange K.. 2009. “Fast model‐based estimation of ancestry in unrelated individuals.” Genome research 19, no. 9: 1655–1664. 10.1101/gr.094052.109. - DOI - PMC - PubMed
    1. Alisauskas, R. T. , and Hobson K. A.. 1993. “Determination of Lesser Snow Goose Diets and Winter Distribution Using Stable Isotope Analysis.” Journal of Wildlife Management 57, no. 1: 49–54. 10.2307/3808999. - DOI
    1. Alisauskas, R. T. , Klaas E. E., Hobson K. A., and Ankney C. D.. 1998. “Stable‐Carbon Isotopes Support Use of Adventitious Color to Discern Winter Origins of Lesser Snow Geese.” Journal of Field Ornithology 69, no. 2: 262–268. http://www.jstor.org/stable/4514315.
    1. Andrews, S. 2010. “FastQC: A Quality Control Tool for High Throughput Sequence Data.” http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
    1. Arostegui, M. C. , Quinn T. P., Seeb L. W., Seeb J. E., and McKinney G. J.. 2019. “Retention of a Chromosomal Inversion From an Anadromous Ancestor Provides the Genetic Basis for Alternative Freshwater Ecotypes in Rainbow Trout.” Molecular Ecology 28, no. 6: 1412–1427. 10.1111/mec.15037. - DOI - PubMed

LinkOut - more resources