Irradiation of Bifunctional Masked Ketone Pro-Aromatics Unveils Autoinductive Autocatalysis via Electron Donor-Acceptor (EDA) Complexes
- PMID: 40854869
- PMCID: PMC12418491
- DOI: 10.1021/acs.orglett.5c02448
Irradiation of Bifunctional Masked Ketone Pro-Aromatics Unveils Autoinductive Autocatalysis via Electron Donor-Acceptor (EDA) Complexes
Abstract
We disclose an autocatalytic electron donor-acceptor (EDA) strategy by reutilizing redox auxiliary byproducts as in situ acceptors, enabling an external initiator-free activation of pro-aromatic dihydroquinazolinones (DHQZs). Spectroscopic and DFT data support the Lewis acid-enhanced aggregate formation where DHQZ serves as both donor and latent acceptor through its quinazolinone byproduct. Kinetic studies reveal a kinetic profile specifically representing autoinductive autocatalysis. This platform enables Giese-type acylation/alkylation, desulfonylation, and Minisci reactions, forging C-C, C-N, C-S, and C-Se bonds under mild conditions.
Figures



References
-
- Narayanam J. M. R., Stephenson C. R. J.. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 2011;40:102–113. doi: 10.1039/B913880N. - DOI - PubMed
- Schultz D. M., Yoon T. P.. Solar Synthesis: Prospects in Visible Light Photocatalysis. Science. 2014;343:1239176. doi: 10.1126/science.1239176. - DOI - PMC - PubMed
- Yu X.-Y., Chen J.-R., Xiao W.-J.. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chem. Rev. 2021;121:506–561. doi: 10.1021/acs.chemrev.0c00030. - DOI - PubMed
-
- Romero N. A., Nicewicz D. A.. Organic Photoredox Catalysis. Chem. Rev. 2016;116:10075–10166. doi: 10.1021/acs.chemrev.6b00057. - DOI - PubMed
- Prier C. K., Rankic D. A., MacMillan D. W. C.. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013;113:5322–5363. doi: 10.1021/cr300503r. - DOI - PMC - PubMed
-
-
Select reviews on the synthetic applications of EDA complex catalysis:
- Crisenza G. E. M., Mazzarella D., Melchiorre P.. Synthetic Methods Driven by the Photoactivity of Electron Donor–Acceptor Complexes. J. Am. Chem. Soc. 2020;142:5461–5476. doi: 10.1021/jacs.0c01416. - DOI - PMC - PubMed
- Yuan Y.-q., Majumder S., Yang M.-h., Guo S.-r.. Recent advances in catalyst-free photochemical reactions via electron-donor-acceptor (EDA) complex process. Tetrahedron Lett. 2020;61:151506. doi: 10.1016/j.tetlet.2019.151506. - DOI
- Yang Z., Liu Y., Cao K., Zhang X., Jiang H., Li J.. Synthetic reactions driven by electron-donor-acceptor (EDA) complexes. Beilstein J. Org. Chem. 2021;17:771–799. doi: 10.3762/bjoc.17.67. - DOI - PMC - PubMed
- Tasnim T., Ayodele M. J., Pitre S. P.. Recent Advances in Employing Catalytic Donors and Acceptors in Electron Donor–Acceptor Complex Photochemistry. J. Org. Chem. 2022;87:10555–10563. doi: 10.1021/acs.joc.2c01013. - DOI - PubMed
-
-
-
Select examples of EDA complex strategy using leaving groups:
- Lin D., Krishnamurti V., Prakash G. K. S.. Visible Light-Mediated Metal-Free Chlorodifluoromethylation of Arenes and Heteroarenes by a Hypervalent Iodine EDA Complex. Eur. J. Org. Chem. 2022;2022:e202200607. doi: 10.1002/ejoc.202200607. - DOI
- Tian Y.-M., Hofmann E., Silva W., Pu X., Touraud D., Gschwind R. M., Kunz W., König B.. Enforced Electronic-Donor-Acceptor Complex Formation in Water for Photochemical Cross-Coupling. Angew. Chem., Int. Ed. 2023;62:e202218775. doi: 10.1002/anie.202218775. - DOI - PubMed
- Lasso J. D., Castillo-Pazos D. J., Salgado J. M., Ruchlin C., Lefebvre L., Farajat D., Perepichka D. F., Li C.-J.. A General Platform for Visible Light Sulfonylation Reactions Enabled by Catalytic Triarylamine EDA Complexes. J. Am. Chem. Soc. 2024;146(4):2583–2592. doi: 10.1021/jacs.3c11225. - DOI - PubMed
- Zhang Y., Feng Q., Zheng Y., Lu Y., Liao S., Huang S.. Radical Hydro-Fluorosulfonylation of Propargylic Alcohols via Electron Donor–Acceptor Photoactivation. Org. Lett. 2024;26:1410–1415. doi: 10.1021/acs.orglett.4c00010. - DOI - PubMed
- Kim J. Y., Lee Y. S., Ryu D. H.. Ternary Electron Donor–Acceptor Complex Enabled Enantioselective Radical Additions to α,β-Unsaturated Carbonyl Compounds. ACS Catal. 2021;11:14811–14818. doi: 10.1021/acscatal.1c04835. - DOI
-
-
-
Select examples of redox auxiliary EDA strategy for directly coupling two substrates:
- Kim I., Park S., Hong S.. Functionalization of Pyridinium Derivatives with 1,4-Dihydropyridines Enabled by Photoinduced Charge Transfer. Org. Lett. 2020;22:8730–8734. doi: 10.1021/acs.orglett.0c03347. - DOI - PubMed
- Lu Y., Fang C.-Z., Liu Q., Li B.-L., Wang Z.-X., Chen X.-Y.. Donor–Acceptor Complex Enables Cascade Radical Cyclization of N-Arylacrylamides with Katritzky Salts. Org. Lett. 2021;23:5425–5429. doi: 10.1021/acs.orglett.1c01758. - DOI - PubMed
- Cabrera-Afonso M. J., Granados A., Molander G. A.. Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angew. Chem., Int. Ed. 2022;61:e202202706. doi: 10.1002/anie.202202706. - DOI - PMC - PubMed
- Lu B., Zhang Z., Jiang M., Liang D., He Z.-W., Bao F.-S., Xiao W.-J., Chen J.-R.. Photoinduced Five-Component Radical Relay Aminocarbonylation of Alkenes. Angew. Chem., Int. Ed. 2023;62:e202309460. doi: 10.1002/anie.202309460. - DOI - PubMed
-
LinkOut - more resources
Full Text Sources