Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep 5;27(35):9593-9598.
doi: 10.1021/acs.orglett.5c02448. Epub 2025 Aug 25.

Irradiation of Bifunctional Masked Ketone Pro-Aromatics Unveils Autoinductive Autocatalysis via Electron Donor-Acceptor (EDA) Complexes

Affiliations

Irradiation of Bifunctional Masked Ketone Pro-Aromatics Unveils Autoinductive Autocatalysis via Electron Donor-Acceptor (EDA) Complexes

Cheng-Lin Chan et al. Org Lett. .

Abstract

We disclose an autocatalytic electron donor-acceptor (EDA) strategy by reutilizing redox auxiliary byproducts as in situ acceptors, enabling an external initiator-free activation of pro-aromatic dihydroquinazolinones (DHQZs). Spectroscopic and DFT data support the Lewis acid-enhanced aggregate formation where DHQZ serves as both donor and latent acceptor through its quinazolinone byproduct. Kinetic studies reveal a kinetic profile specifically representing autoinductive autocatalysis. This platform enables Giese-type acylation/alkylation, desulfonylation, and Minisci reactions, forging C-C, C-N, C-S, and C-Se bonds under mild conditions.

PubMed Disclaimer

Figures

1
1. Background and Our Work
2
2. Substrate Scope
1
1
Mechanistic studies. (a) UV–vis absorption experiments. (b) DFT calculations of the HOMO/LUMO for the energy gap value comparison. (c) Reaction monitoring to evaluate the effect of adding 1a′ on the reaction rate. (d) Proposed mechanism for the autoinductive autocatalytic EDA complex catalysis.

References

    1. Narayanam J. M. R., Stephenson C. R. J.. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 2011;40:102–113. doi: 10.1039/B913880N. - DOI - PubMed
    2. Schultz D. M., Yoon T. P.. Solar Synthesis: Prospects in Visible Light Photocatalysis. Science. 2014;343:1239176. doi: 10.1126/science.1239176. - DOI - PMC - PubMed
    3. Yu X.-Y., Chen J.-R., Xiao W.-J.. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chem. Rev. 2021;121:506–561. doi: 10.1021/acs.chemrev.0c00030. - DOI - PubMed
    1. Romero N. A., Nicewicz D. A.. Organic Photoredox Catalysis. Chem. Rev. 2016;116:10075–10166. doi: 10.1021/acs.chemrev.6b00057. - DOI - PubMed
    2. Prier C. K., Rankic D. A., MacMillan D. W. C.. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013;113:5322–5363. doi: 10.1021/cr300503r. - DOI - PMC - PubMed
    1. Select reviews on the synthetic applications of EDA complex catalysis:

    2. Crisenza G. E. M., Mazzarella D., Melchiorre P.. Synthetic Methods Driven by the Photoactivity of Electron Donor–Acceptor Complexes. J. Am. Chem. Soc. 2020;142:5461–5476. doi: 10.1021/jacs.0c01416. - DOI - PMC - PubMed
    3. Yuan Y.-q., Majumder S., Yang M.-h., Guo S.-r.. Recent advances in catalyst-free photochemical reactions via electron-donor-acceptor (EDA) complex process. Tetrahedron Lett. 2020;61:151506. doi: 10.1016/j.tetlet.2019.151506. - DOI
    4. Yang Z., Liu Y., Cao K., Zhang X., Jiang H., Li J.. Synthetic reactions driven by electron-donor-acceptor (EDA) complexes. Beilstein J. Org. Chem. 2021;17:771–799. doi: 10.3762/bjoc.17.67. - DOI - PMC - PubMed
    5. Tasnim T., Ayodele M. J., Pitre S. P.. Recent Advances in Employing Catalytic Donors and Acceptors in Electron Donor–Acceptor Complex Photochemistry. J. Org. Chem. 2022;87:10555–10563. doi: 10.1021/acs.joc.2c01013. - DOI - PubMed
    1. Select examples of EDA complex strategy using leaving groups:

    2. Lin D., Krishnamurti V., Prakash G. K. S.. Visible Light-Mediated Metal-Free Chlorodifluoromethylation of Arenes and Heteroarenes by a Hypervalent Iodine EDA Complex. Eur. J. Org. Chem. 2022;2022:e202200607. doi: 10.1002/ejoc.202200607. - DOI
    3. Tian Y.-M., Hofmann E., Silva W., Pu X., Touraud D., Gschwind R. M., Kunz W., König B.. Enforced Electronic-Donor-Acceptor Complex Formation in Water for Photochemical Cross-Coupling. Angew. Chem., Int. Ed. 2023;62:e202218775. doi: 10.1002/anie.202218775. - DOI - PubMed
    4. Lasso J. D., Castillo-Pazos D. J., Salgado J. M., Ruchlin C., Lefebvre L., Farajat D., Perepichka D. F., Li C.-J.. A General Platform for Visible Light Sulfonylation Reactions Enabled by Catalytic Triarylamine EDA Complexes. J. Am. Chem. Soc. 2024;146(4):2583–2592. doi: 10.1021/jacs.3c11225. - DOI - PubMed
    5. Zhang Y., Feng Q., Zheng Y., Lu Y., Liao S., Huang S.. Radical Hydro-Fluorosulfonylation of Propargylic Alcohols via Electron Donor–Acceptor Photoactivation. Org. Lett. 2024;26:1410–1415. doi: 10.1021/acs.orglett.4c00010. - DOI - PubMed
    6. Kim J. Y., Lee Y. S., Ryu D. H.. Ternary Electron Donor–Acceptor Complex Enabled Enantioselective Radical Additions to α,β-Unsaturated Carbonyl Compounds. ACS Catal. 2021;11:14811–14818. doi: 10.1021/acscatal.1c04835. - DOI
    1. Select examples of redox auxiliary EDA strategy for directly coupling two substrates:

    2. Kim I., Park S., Hong S.. Functionalization of Pyridinium Derivatives with 1,4-Dihydropyridines Enabled by Photoinduced Charge Transfer. Org. Lett. 2020;22:8730–8734. doi: 10.1021/acs.orglett.0c03347. - DOI - PubMed
    3. Lu Y., Fang C.-Z., Liu Q., Li B.-L., Wang Z.-X., Chen X.-Y.. Donor–Acceptor Complex Enables Cascade Radical Cyclization of N-Arylacrylamides with Katritzky Salts. Org. Lett. 2021;23:5425–5429. doi: 10.1021/acs.orglett.1c01758. - DOI - PubMed
    4. Cabrera-Afonso M. J., Granados A., Molander G. A.. Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angew. Chem., Int. Ed. 2022;61:e202202706. doi: 10.1002/anie.202202706. - DOI - PMC - PubMed
    5. Lu B., Zhang Z., Jiang M., Liang D., He Z.-W., Bao F.-S., Xiao W.-J., Chen J.-R.. Photoinduced Five-Component Radical Relay Aminocarbonylation of Alkenes. Angew. Chem., Int. Ed. 2023;62:e202309460. doi: 10.1002/anie.202309460. - DOI - PubMed

LinkOut - more resources