Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep 2;122(35):e2504264122.
doi: 10.1073/pnas.2504264122. Epub 2025 Aug 26.

Color-neutral and reversible tissue transparency enables longitudinal deep-tissue imaging in live mice

Affiliations

Color-neutral and reversible tissue transparency enables longitudinal deep-tissue imaging in live mice

Carl H C Keck et al. Proc Natl Acad Sci U S A. .

Abstract

Light scattering in biological tissue presents a significant challenge for deep in vivo imaging. Our previous work demonstrated the ability to achieve optical transparency in live mice using intensely absorbing dye molecules, which created transparency in the red spectrum while blocking shorter-wavelength photons. In this paper, we extend this capability to achieve optical transparency across the entire visible spectrum by employing molecules with strong absorption in the ultraviolet spectrum and sharp absorption edges that rapidly decline upon entering the visible spectrum. This color-neutral and reversible tissue transparency method enables optical transparency for imaging commonly used fluorophores in the green and yellow spectra. Notably, this approach facilitates tissue transparency for structural and functional imaging of the live mouse brain labeled with yellow fluorescent protein and GCaMP through the scalp and skull. We show that this method enables longitudinal imaging of the same brain regions in awake mice over multiple days during development. Histological analyses of the skin and systemic toxicology studies indicate minimal acute or chronic damage to the skin or body using this approach. This color-neutral and reversible tissue transparency technique opens opportunities for noninvasive deep-tissue optical imaging, enabling long-term visualization of cellular structures and dynamic activity with high spatiotemporal resolution and chronic tracking capabilities.

Keywords: Kramers–Kronig relations; deep tissue imaging; optical transparency; two-photon microscopy.

PubMed Disclaimer

Conflict of interest statement

Competing interests statement:The authors declare no competing interest.

Update of

References

    1. Lichtman J. W., Conchello J.-A., Fluorescence microscopy. Nat. Methods 2, 910–919 (2005). - PubMed
    1. Helmchen F., Denk W., Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005). - PubMed
    1. Horton N. G., et al. , In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7, 205–209 (2013). - PMC - PubMed
    1. Song G., Jelly E. T., Chu K. K., Kendall W. Y., Wax A., A review of low-cost and portable optical coherence tomography. Prog. Biomed. Eng. (Bristol) 3, 032002 (2021). - PMC - PubMed
    1. Cho S.-W., et al. , Sounding out the dynamics: A concise review of high-speed photoacoustic microscopy. J. Biomed. Opt. 29, S11521 (2024). - PMC - PubMed

LinkOut - more resources