A compressed hierarchy for visual form processing in the tree shrew
- PMID: 40866712
- DOI: 10.1038/s41586-025-09441-w
A compressed hierarchy for visual form processing in the tree shrew
Abstract
Our knowledge of the brain processes that govern vision is largely derived from studying primates, whose hierarchically organized visual system1 inspired the architecture of deep neural networks2. This raises questions about the universality of such hierarchical structures. Here we examined the large-scale functional organization for vision in one of the closest living relatives to primates, the tree shrew. We performed Neuropixels recordings3,4 across many cortical and thalamic areas spanning the tree shrew ventral visual system while presenting a large battery of visual stimuli in awake tree shrews. We found that receptive field size, response latency and selectivity for naturalistic textures, compared with spectrally matched noise5, all increased moving anteriorly along the tree shrew visual pathway, consistent with a primate-like hierarchical organization6,7. However, tree shrew area V2 already harboured a high-level representation of complex objects. First, V2 encoded a complete representation of a high-level object space8. Second, V2 activity supported the most accurate object decoding and reconstruction among all tree shrew visual areas. In fact, object decoding accuracy from tree shrew V2 was comparable to that in macaque posterior IT and substantially higher than that in macaque V2. Finally, starting in V2, we found strongly face-selective cells resembling those reported in macaque inferotemporal cortex9. Overall, these findings show how core computational principles of visual form processing found in primates are conserved, yet hierarchically compressed, in a small but highly visual mammal.
© 2025. The Author(s).
Conflict of interest statement
Competing interests: The authors declare no competing interests.
Similar articles
-
Prescription of Controlled Substances: Benefits and Risks.2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30726003 Free Books & Documents.
-
Short-Term Memory Impairment.2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
-
Sexual Harassment and Prevention Training.2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 36508513 Free Books & Documents.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.Health Technol Assess. 2025 Jun 25:1-73. doi: 10.3310/SKHT8119. Online ahead of print. Health Technol Assess. 2025. PMID: 40580049 Free PMC article.
References
-
- Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991). - PubMed
-
- LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). - PubMed
-
- Trautmann, E. M. et al. Large-scale high-density brain-wide neural recording in nonhuman primates. Nat. Neurosci. 28, 1562–1575 (2025).
LinkOut - more resources
Full Text Sources