Multi-Scale Temporal Fusion Network for Real-Time Multimodal Emotion Recognition in IoT Environments
- PMID: 40871929
- PMCID: PMC12390569
- DOI: 10.3390/s25165066
Multi-Scale Temporal Fusion Network for Real-Time Multimodal Emotion Recognition in IoT Environments
Abstract
This paper introduces EmotionTFN (Emotion-Multi-Scale Temporal Fusion Network), a novel hierarchical temporal fusion architecture that addresses key challenges in IoT emotion recognition by processing diverse sensor data while maintaining accuracy across multiple temporal scales. The architecture integrates physiological signals (EEG, PPG, and GSR), visual, and audio data using hierarchical temporal attention across short-term (0.5-2 s), medium-term (2-10 s), and long-term (10-60 s) windows. Edge computing optimizations, including model compression, quantization, and adaptive sampling, enable deployment on resource-constrained devices. Extensive experiments on MELD, DEAP, and G-REx datasets demonstrate 94.2% accuracy on discrete emotion classification and 0.087 mean absolute error on dimensional prediction, outperforming the best baseline (87.4%). The system maintains sub-200 ms latency on IoT hardware while achieving a 40% improvement in energy efficiency. Real-world deployment validation over four weeks achieved 97.2% uptime and user satisfaction scores of 4.1/5.0 while ensuring privacy through local processing.
Keywords: Internet of Things; edge computing; emotion recognition; multimodal fusion; real-time processing; temporal attention.
Conflict of interest statement
The author declares no conflicts of interest.
Figures
Similar articles
-
MB-MSTFNet: A Multi-Band Spatio-Temporal Attention Network for EEG Sensor-Based Emotion Recognition.Sensors (Basel). 2025 Aug 5;25(15):4819. doi: 10.3390/s25154819. Sensors (Basel). 2025. PMID: 40807983 Free PMC article.
-
Hybrid deep learning-enabled framework for enhancing security, data integrity, and operational performance in Healthcare Internet of Things (H-IoT) environments.Sci Rep. 2025 Aug 23;15(1):31039. doi: 10.1038/s41598-025-15292-2. Sci Rep. 2025. PMID: 40849566 Free PMC article.
-
An ECG signal processing and cardiac disease prediction approach for IoT-based health monitoring system using optimized epistemic neural network.Electromagn Biol Med. 2025;44(3):325-347. doi: 10.1080/15368378.2025.2503334. Epub 2025 May 10. Electromagn Biol Med. 2025. PMID: 40347178
-
New Trends in Emotion Recognition Using Image Analysis by Neural Networks, A Systematic Review.Sensors (Basel). 2023 Aug 10;23(16):7092. doi: 10.3390/s23167092. Sensors (Basel). 2023. PMID: 37631629 Free PMC article.
-
EEG-based affective brain-computer interfaces: recent advancements and future challenges.J Neural Eng. 2025 Jun 27;22(3). doi: 10.1088/1741-2552/ade290. J Neural Eng. 2025. PMID: 40490007 Review.
References
-
- Cai Y., Genovese A., Piuri V., Scotti F., Siegel M. IoT-Based Architectures for Sensing and Local Data Processing in Ambient Intelligence: Research and Industrial Trends; Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC); Auckland, New Zealand. 20–23 May 2019; pp. 1–6. - DOI
-
- Picard R.W. Affective Computing. MIT Press; Cambridge, MA, USA: 1997.
-
- Kaklauskas A., Abraham A., Milevicius V., Ubarte I., Perov S., Dzemyda G., Kurasova O., Kersys A., Rute J., Maciuliene M., et al. A Review of AI Cloud and Edge Sensors, Methods, and Applications for the Recognition of Emotional, Affective and Physiological States. Sensors. 2022;22:7843. doi: 10.3390/s22207824. - DOI - PMC - PubMed
-
- Russell J.A. A circumplex model of affect. J. Pers. Soc. Psychol. 1980;39:1161–1178. doi: 10.1037/h0077714. - DOI
MeSH terms
LinkOut - more resources
Full Text Sources