Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Aug 28:1-25.
doi: 10.1080/17435889.2025.2550233. Online ahead of print.

Strategies to enhance the effects of nanotechnology-mediated photodynamic therapy

Affiliations
Review

Strategies to enhance the effects of nanotechnology-mediated photodynamic therapy

Yanhan Mo et al. Nanomedicine (Lond). .

Abstract

Photodynamic therapy (PDT) is a noninvasive therapeutic approach, particularly effective in tumor treatment. PDT utilizes photosensitizers (PSs) to absorb light at specific wavelengths, converting photon energy into chemical energy and subsequently generating cytotoxic reactive oxygen species (ROS). These ROS trigger cell death through apoptosis, necrosis and autophagy-related pathways. Compared with conventional therapies, PDT exhibits significant advantages, including high selectivity, repeatability, enhanced safety, minimal side effects, low drug resistance, and compatibility with radiotherapy or chemotherapy. However, due to the limited tissue penetration depth of light, PDT demonstrates suboptimal efficacy in treating deep tumors. Additionally, limitations such as poor targeting of photosensitizers and unfavorable factors in the tumor microenvironment greatly restrict PDT's therapeutic efficacy and clinical applicability. To enhance PDT efficacy, various strategies have been explored, among which nanotechnology has emerged as a key research focus. This review summarizes multiple approaches to augmenting nanotechnology-mediated PDT, with emphasis on achieving targeted delivery of photosensitizers (tissue, cell, and organelle-level), improving the performance of photosensitizers and modulating the tumor microenvironment. These insights provide theoretical guidance and practical references for developing novel and efficient PDT nanoplatforms. We conducted the literature search in PubMed, Elsevier ScienceDirect, Web of Science, Wiley and Scopus (from 2004 to 2025).

Keywords: Photodynamic therapy; nanotechnology; photosensitizer; target; tumor microenvironment.

PubMed Disclaimer

Similar articles

LinkOut - more resources