MAIT and other innate-like T cells integrate adaptive immune responses to modulate interval-dependent reactogenicity to mRNA vaccines
- PMID: 40880519
- DOI: 10.1126/sciimmunol.adu3337
MAIT and other innate-like T cells integrate adaptive immune responses to modulate interval-dependent reactogenicity to mRNA vaccines
Abstract
Adenoviral (Ad) vectors and mRNA vaccines exhibit distinct patterns of immune responses and reactogenicity, but underpinning mechanisms remain unclear. We longitudinally compared homologous ChAdOx1 nCoV-19 and BNT162b2 vaccination, focusing on cytokine-responsive innate-like lymphocytes-mucosal-associated invariant T (MAIT) cells and Vδ2+ γδ T cells-which sense and tune innate-adaptive cross-talk. Ad priming elicited robust type I interferon (IFN)-mediated innate-like T cell activation, augmenting T cell responses (innate-to-adaptive signaling), which was dampened at boost by antivector immunity. Conversely, mRNA boosting enhanced innate-like responses, driven by prime-induced spike-specific memory T cell-derived IFN-γ (adaptive-to-innate signaling). Extending the dosing interval dampened inflammation at boost because of waning T cell memory. In a separate vaccine trial, preboost spike-specific T cells predicted severe mRNA reactogenicity regardless of the priming platform or interval. Overall, bidirectional innate-like and adaptive cross-talk, and IFN-γ-licensed innate-like T cells, orchestrate interval-dependent early vaccine responses, suggesting modifiable targets for safer, more effective regimens.