Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 28:S0002-9378(25)00588-5.
doi: 10.1016/j.ajog.2025.08.031. Online ahead of print.

Farnesylation-Dependent Kinetochore Targeting of CENP-F Is Essential for Oocyte Meiotic Progression and Female Fertility

Affiliations

Farnesylation-Dependent Kinetochore Targeting of CENP-F Is Essential for Oocyte Meiotic Progression and Female Fertility

Ou Zhong et al. Am J Obstet Gynecol. .

Abstract

Background: During mammalian oocyte meiosis, accurate chromosome segregation critically depends on precise regulation of kinetochore-microtubule (K-MT) attachments, a process monitored by the spindle assembly checkpoint (SAC). While CENP-F has been well characterized as a kinetochore-associated protein that stabilizes K-MT connections during mitosis, its functional mechanisms during meiosis remain poorly understood. In particular, there is still controversy over whether farnesylation modification governs localization and functionality of CENP-F. Concurrently, clinical investigations face a knowledge gap regarding the genetic basis of oocyte maturation arrest, a prevalent phenotype observed in female infertility patients.

Objective: This study aims to reveal the regulatory mechanism of CENP-F farnesylation modification on its meiotic function and explore the association between CENP-F gene mutations and female oocyte maturation disorders.

Study design: Previous studies have shown that CENP-F is essential for chromosome segregation during mitosis, but its functional mechanism during meiosis remains poorly understood. Oocyte microinjection, western blotting, co-immunoprecipitation (Co-IP), and immunofluorescence were used to explore the localization and function of CENP-F in oocytes. The role of CENP-F farnesylation in mouse oocytes was investigated using pharmacological (farnesyltransferase inhibitor treatment) and genetic (C3111S point mutation) methods. Subsequently, four patients with CENP-F mutations were identified in the whole-exome sequencing (WES) dataset consisting of 179 infertile patients with oocyte maturation disorders. Mouse oocyte and 293T cell models were used to verify the mechanism of patient-derived CENP-F mutations causing oocyte maturation disorders.

Results: Microinjection of Cenp-f siRNA into mouse oocytes significantly reduced maturation rates (77.84±2.087% vs 34.26±4.748%, P<.01), with the majority arrested at metaphase I (MI) (17.69±2.207% vs 44.93±5.539%, P<.05). Time-course immunofluorescence analysis revealed dynamic CENP-F localization: initially dispersed across chromosome following nuclear envelope breakdown (NEBD), then progressively accumulating at kinetochores by MI. Co-IP assays confirmed a direct interaction between CENP-F and AURKB. Knockdown of AURKB would damage the kinetochore localization of CENP-F in oocytes. Farnesylation inhibition (via farnesyltransferase inhibitor or C3111S mutation) significantly decreased oocyte maturation rates (75.58±3.703% vs 46.18±1.282%, P<.01; 75.58±3.703% vs 44.04±2.541%, P<.01), concomitantly weakening interaction between CENP-F and AURKB (P<.01) and disrupting kinetochore localization. Genetic screening identified four CENP-F mutations in 179 infertile women with oocyte maturation arrest. Microinjection of patient-derived mutant CENP-F cRNAs into mouse oocytes significantly reduced maturation rates (77.00±2.411% vs 49.10±6.561%, P<.01; 77.00±2.411% vs35.43±1.035%, P<.01; 77.00±2.411% vs 55.43±1.288%, P<.05; 77.00±2.411% vs 40.00±4.187%, P<.01). Two of these mutations (K1708T/S1971fs) can reduce the farnesylation of CENP-F (P<.05/P<.01), damage its interaction with AURKB (P<0.05/P<0.01), and disrupt the kinetochore localization. Both CENP-F depletion and patient mutations induced constitutive SAC activation, and the treatment with SAC inhibitor partially rescued the meiotic arrest phenotype in oocytes (P<.05).

Conclusion: This study represents the first demonstration of a direct association between CENP-F genetic defects and human infertility, uncovering a novel farnesylation-dependent mechanism that governs meiotic progression, while simultaneously identifying CENP-F as a potential molecular marker for diagnosing oocyte maturation failure.

Keywords: CENP-F; Farnesylation; Female infertility; Kinetochore; Oocyte metaphase I arrest; Spindle assembly checkpoint.

PubMed Disclaimer

Similar articles

LinkOut - more resources