Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025;160(5):330-333.
doi: 10.1254/fpj.25032.

[Microglia-mediated cognitive impairment induced by methamphetamine]

[Article in Japanese]
Affiliations
Review

[Microglia-mediated cognitive impairment induced by methamphetamine]

[Article in Japanese]
Naotaka Izuo et al. Nihon Yakurigaku Zasshi. 2025.

Abstract

More than half of chronic methamphetamine (METH) users exhibit multi-domain cognitive deficits, including impaired attention, executive function, and memory. MRI studies consistently demonstrate hippocampal atrophy and frontotemporal cortical thinning; these structural changes spatially overlap with glial activation, indicating the coexistence of morphological damage and ongoing neuroinflammation. To clarify causality, we developed a mouse model in which low-dose METH is micro-infused into the nucleus accumbens. The mice displayed cognitive dysfunction and hippocampal long-term potentiation deficits together with microglial activation and mRNA up-regulation of IL-1β and the complement component C1q. Suppressing microglial activation with minocycline normalized these soluble factors and restored cognitive function. Complement proteins drive microglia-mediated synaptic pruning, and their over-activation has been implicated in Alzheimer's disease and schizophrenia. Taken together, our findings suggest that METH-induced cognitive impairment is mediated by abnormal microglial pruning via complement signaling. This review summarizes the clinical phenotype of METH-related cognitive dysfunction, integrates preclinical findings, and proposes novel therapeutic avenues that target microglial activation.

PubMed Disclaimer

Substances