Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Aug 15:12:1615264.
doi: 10.3389/fmed.2025.1615264. eCollection 2025.

Molecular mechanisms and potential implications of ferroptosis, cuproptosis, and disulfidptosis in septic lung injury

Affiliations
Review

Molecular mechanisms and potential implications of ferroptosis, cuproptosis, and disulfidptosis in septic lung injury

Jiaxin Li et al. Front Med (Lausanne). .

Abstract

Sepsis remains a life-threatening condition worldwide, causing significant morbidity and mortality across diverse patient populations. Among the various organs adversely affected by sepsis, the lung is particularly vulnerable, often succumbing to acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome (ARDS). Recent basic and translational research has highlighted the importance of multiple regulated cell death (RCD) pathways beyond traditional apoptosis in the pathogenesis of septic lung injury. Three such RCDs, termed ferroptosis, cuproptosis, and disulfidptosis, are increasingly studied for their relevance to critical illnesses. Ferroptosis involves iron-driven lipid peroxidation, cuproptosis depends on copper ion imbalance and mitochondrial protein aggregation, and disulfidptosis emerges from dysregulated sulfide metabolism leading to excessive disulfide bond formation. This review provides an extensive discussion of these RCD pathways within the context of sepsis-induced lung injury. We begin by summarizing the current state of knowledge in septic lung injury, emphasizing inflammatory, immunological, and oxidative stress mechanisms. We then provide a detailed overview of ferroptosis, cuproptosis, and disulfidptosis, illustrating their molecular underpinnings and how they intersect with established sepsis pathways, such as tumor necrosis factor (TNF), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) signaling cascades. We also discuss emerging findings on the crosstalk among these RCD modes, potential biomarkers for early detection, and therapeutic targets for modulating these pathways. Although many of these findings remain in the early stages of translational research, they collectively underscore the complexity of septic lung injury and offer new directions for improving clinical management. Future investigations, bolstered by integrative "omics" approaches, refined animal models, and well-designed clinical trials, will be pivotal to fully realize the diagnostic and therapeutic potential of ferroptosis, cuproptosis, and disulfidptosis in sepsis. We further propose a "redox stress-metal homeostasis-sulfur metabolism" triangular network, centered on Nrf2's dual regulation of iron/copper transporters and glutathione synthesis, as a unifying framework for RCD modulation in sepsis. A signaling interaction diagram highlights actionable targets for combinatorial therapies.

Keywords: copper homeostasis; cuproptosis; disulfidptosis; ferroptosis; iron metabolism; lung injury; sepsis; sulfide metabolism.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Molecular mechanisms of ferroptosis in septic lung injury.
Figure 2
Figure 2
Molecular mechanisms of cuproptosis in septic lung injury.
Figure 3
Figure 3
Molecular mechanisms of disulfidptosis in septic lung injury.
Figure 4
Figure 4
A schematic diagram illustrating the crosstalk of ferroptosis, cuproptosis, and disulfidptosis.

Similar articles

References

    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. (2016) 315:801–10. doi: 10.1001/jama.2016.0287 - DOI - PMC - PubMed
    1. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. International forum of acute care, assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. (2016) 193:259–72. doi: 10.1164/rccm.201504-0781OC - DOI - PubMed
    1. Dong Y, Dai T, Wang B, Zhang L, Zeng L, Huang J, et al. The way of SARS-CoV-2 vaccine development: success and challenges. Signal Transduct Target Ther. (2021) 6:387. doi: 10.1038/s41392-021-00796-w - DOI - PMC - PubMed
    1. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the global burden of disease study. Lancet. (2020) 395:200–11. doi: 10.1016/S0140-6736(19)32989-7 - DOI - PMC - PubMed
    1. Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. (2018) 392:75–87. doi: 10.1016/S0140-6736(18)30696-2 - DOI - PubMed

LinkOut - more resources